Spatial and temporal effects of consumer nitrogen recycling in a large oligotrophic lake

Simon D. Stewart¹, David P. Hamilton^{1,2}, W. Troy Baisden^{1,3}, Piet Verburg⁴, Ian C. Duggan¹, Brendan Hicks¹ ¹University of Waikato, ²Autralian Rivers Institute, ³GNS Science, ⁴NIWA

Lake Ecosystem Research New Zeala

Photo: Warrick Powrie

Taihoro Nukurangi

Objective

Demonstrate the strong consumer nitrogen cycling interactions observed a large oligotrophic lake – Lake Taupō and should be considered in management

Integrating CNR into lakes

Context: Lake Taupō annual cycle

Considering food web dynamics

Stewart et al. 2017 Freshwater Biology

Fuelling the food web

Stewart et al. 2017 Freshwater Biology

Considering food web dynamics

Evidence for CNR - mass-balance

Evidence for CNR - mass-balance

So... lets try using this information to model the trout population

- r = growth of smelt
- $m_1 \& m_2 = trout mortality$
- e = energy conversion efficiency
- St = index for the number of days mixed

Acknowledgements

Funding:

- Advocates for the Tongariro River is association with:
- Pharazyn Charitable Trust, Taupo District Council and the Department of Conservation
- MBIE "lakes resilience" programme.

- Andy Philips and the team at NIC: Stable isotope analysis
- Dudley Bell, Warrick Powrie, Dr Nick Bradford, John Crowley, Chester Boyes and Anna Sintenie: field assistance
- Ron Ram (UoW): Nutrient analyses
- Chester Boyes and Warrick Powrie: Photographs

Evidence for CNR – stable isotopes

Evidence for CNR – stable isotopes

8

Summary

- CNR is a significant influx of N to support primary production in Lake Taupō:
 - Strong correlations show the contribution of CNR to the DIN pool
 - Evidence of CNR contributions were strongest during summer stratification – when nutrient availability was low and the lake was netheterotrophic
- These findings present a case for considering food web dynamics when management is aimed towards specific nutrient concentration targets

