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Abstract  

Lakes with high water quality and low productivity, commonly referred to as 

‘oligotrophic’, are often viewed as relatively pristine and highly aesthetic 

ecosystems, but may still require management of nutrient inputs and fisheries. The 

ecosystem processes that determine functions in oligotrophic lakes are often distinct 

from those in eutrophic lakes, which are traditionally more actively managed. This 

is particularly true for nitrogen cycling which, in oligotrophic lakes, is closely 

coupled with food web dynamics. Strong nitrogen cycling-food web coupling in 

oligotrophic systems is partly related to greater significance of consumer nutrient 

recycling. Given that processes affecting nutrient cycles and food web dynamics 

can be actively managed (e.g., through catchment nutrient load regulation and 

fisheries management, respectively), understanding the interactions between these 

two processes is key to management of oligotrophic lakes globally. This thesis 

examines interactions between nitrogen cycling and food web dynamics in 

oligotrophic Lake Taupō. 

Lake Taupō is a large (616 km2 in area), deep (92 m mean depth), warm monomictic 

lake in the North Island of New Zealand. It shares many of the characteristics 

typical of large, deep oligotrophic lakes globally and can be viewed as a model 

system to examine nutrient cycling-food web interactions. Since 2008, nitrogen 

loads to the lake have been restricted by local government regulation with the 

objective to maintain high standards of water quality. Lake Taupō is the only 

example globally of exclusively N management for water quality purposes. 

Abundance of rainbow trout (Oncorhynchus mykiss: Salmonidae), the top predator 

in the Taupō system, is managed through a regulated recreational fishery. 

Coincident with a period of declining water quality between 1995 and 2005, the 

trout in Lake Taupō underwent a drastic decline in abundance and individual size. 

However, connection between the changes in water quality and trout abundance has 

never been examined. Globally, there have been few empirical studies, and little 

research generally, to examine interactions of food web dynamics and nutrient 

availability, despite growing awareness of the impact of these interactions on 

primary production.  

One component of this study synthesises literature and case studies of lakes to 

present a contemporary understanding of food web ecology and N-cycling 
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processes. The synthesis indicates that consumer nutrient recycling effects on lake 

productivity are likely to be seasonally specific and act to supplement demand by 

primary producers, especially during periods when other nutrient supply processes 

(e.g., hypolimnetic upwelling) are suppressed. Consumer nutrient recycling itself is 

regulated by food web structure, with smaller organisms contributing 

disproportionately to recycling locally and large mobile organisms acting as 

nutrient dispersal vectors across boundaries (e.g., the thermocline). Tightly coupled 

nutrient cycling-food web interactions have the potential to provide ecosystem 

resilience to global environmental change drivers such as climate change. 

In this thesis I build on findings from the literature synthesis and use three methods 

to investigate nitrogen cycling food web interactions in Lake Taupō. First, δ15N and 

δ13C stable isotope analyses are used to quantify intra-annual patterns in, and 

drivers of, food web dynamics. The focus is on littoral-pelagic diet coupling by 

mobile consumers in response to variation in pelagic resource availability. Second, 

spatially resolved samples (littoral and pelagic surface waters, metalimnetic and 

hypolimnetic waters) taken at seasonal intervals over one year are used to contribute 

information towards consumer nutrient recycling. Stable isotope analyses of δ15N-

POM (particulate organic matter), δ15N-NH4
+, δ15N-NO3

- and δ18O-NO3
-; 15N are 

used to indicate how consumer nutrient recycling contributes to nitrogen 

availability. Third, food web dynamics and consumer nutrient recycling are used as 

inputs to a nitrogen mass-balance model for pelagic surface waters. This model 

explicitly considers littoral-pelagic exchange using a coupled three-dimensional 

hydrodynamic model to resolve advection and mixing. Littoral-derived nitrogen 

fluxes to the pelagic surface waters and nitrogen fluxes from hypolimnetic to 

pelagic surface waters were estimated from the three-dimensional hydrodynamic 

model and nitrogen concentrations of the respective layers. Output from the 

hydrodynamic model was used in combination with other nitrogen influxes to the 

pelagic surface waters (e.g., hypolimnetic upwelling, littoral exchange, catchment 

loading, atmospheric deposition and N-fixation) in a mass balance model 

quantifying the role of recycling fluxes in sustaining phytoplankton nitrogen uptake.  

Collectively, these research chapters demonstrated that there is close coupling of 

nitrogen cycling and the food web in Lake Taupō and that this coupling is strongly 

seasonally forced. Pelagic nutrient availability was strongly influenced by 

phytoplankton biomass. Highest nutrient availability was associated with winter 
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mixing and the period of highest phytoplankton biomass. These conditions resulted 

in an increased reliance on pelagic trophic resources across all trophic levels with 

little evidence from stable isotope analyses for substantial nutrient recycling during 

this period. During summer stratification, however, surface water nutrient 

concentrations and pelagic phytoplankton abundance reached an annual minimum. 

Correspondingly, zooplankton abundance decreased while trout and smelt 

consumed more littoral resources. Strong littoral-pelagic dietary coupling was 

demonstrated by smelt and trout. This finding is contrary to previous assumptions 

that the Lake Taupō food web is predominantly supported by pelagic production 

but aligns with current theories that postulate that food web interactions are 

dynamic and adaptive to environmental conditions.  

Surface water POM, NH4
+ and NO3

- all became increasingly δ15N-depleted over the 

period of summer stratification, indicated increased reliance on consumer nutrient 

recycling. Depleted δ15N-NO3
- was associated with enriched δ18O-NO3

-, indicative 

of high heterotrophic biomass relative to primary producers. Strong correlations 

between δ15N-NH4
+ excreted by zooplankton and δ15N-NH4

+ in water taken from 

the deep chlorophyll maximum suggest particularly strong coupling of primary 

production and consumer nutrient recycling at this depth. Collectively, these 

findings demonstrate that seasonal alternation of bottom-up and top-down 

processes control nitrogen cycling and food web interactions in Lake Taupō. 

The pelagic surface water nitrogen mass balance model, inclusive of physical 

transport using the three-dimensional hydrodynamic model, quantified the seasonal 

contributions of consumer nitrogen recycling to pelagic primary production. 

Nitrogen fluxes from littoral to pelagic waters originating from consumer transport 

were greater than those arising from physical transport during early and mid-

summer stratified periods. Physical transport of littoral-derived-N into pelagic 

surface waters was greatest during autumn, prior to destratification and were 

minimum during mid-stratification. In situ recycling accounted for between 75 and 

95% of phytoplankton nitrogen demand throughout the year. Nitrogen recycling 

rates were found to be greatest during winter mixing when phytoplankton biomass 

was highest. A positive linear relationship between surface water δ15N-NO3
- and 

modelled recycling rates suggests that phytoplankton nitrogen excretion, which is 

not 15N-depleted, drives much of the seasonal variation in nitrogen recycling and 

that consumer nutrient recycling provides a relatively constant nitrogen supply 
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throughout the year. Given that nitrogen recycling rates were positively related to 

phytoplankton biomass, nitrogen recycling may act as a positive feedback, 

amplifying the growth response of phytoplankton to external nutrient supplies. The 

base level of consumer nutrient recycling, on the other hand, may provide resilience 

to strong seasonal fluctuations in nitrogen supply associated with other sources. 

This study demonstrates strong bi-directional interactions between nitrogen cycling 

and food web dynamics in Lake Taupō. These findings can be used to understand 

the reciprocating effects of observed long-term changes in nutrient concentrations 

and trout abundance in Lake Taupō. The observed inter-decadal variations observed 

in top-predator abundance could have substantial impacts on nitrogen availability 

for phytoplankton in the pelagic zone through changes in food web structure and 

consumer nutrient recycling. In oligotrophic lakes such as Taupō, management 

should be adopted to consider the interactions between food web dynamics and 

nutrient cycling.  One potential action includes adapting trout harvest based on 

winter pelagic primary productivity data as a measure of resource availability. A 

second potential action is adapting trout harvest to regulate smelt populations, thus 

altering the degree of littoral-derived nutrient translocation during the stratified 

period. This thesis supports the growing recognition that ecosystem-level 

management of lakes will increasingly be required to counter multiple interacting 

ecosystem stressors (e.g., climate change, invasive species, fishery exploitation and 

cultural eutrophication). Informed management using these approaches will be 

critical for maintaining resilient oligotrophic lakes.  
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1. Chapter one 

Introduction 

1.1 Theoretical background  

Lakes with high water quality and low productivity, commonly referred to as 

‘oligotrophic’, provide significant benefits to society. They are valued for drinking 

water, fisheries, recreation, aesthetics and spiritual connections (Carpenter et al. 

2011; Keeler et al. 2012). Understanding the ecosystem processes operating in these 

systems, specifically those that maintain an oligotrophic state, is critical for their 

management (Carpenter 2003; Folke et al. 2004). To date, much of our 

understanding of lake ecosystem processes has come from lakes that have already 

been severely impacted by anthropogenic nutrient enrichment, known as cultural 

eutrophication. Research investigating critical transitions and state-shifts of these 

systems in response to eutrophication demonstrates the importance of interactions 

of food webs and nutrient cycles (Scheffer et al. 2001; Folke et al. 2004; Seekell 

2016). However, knowledge gained from investigating these systems is not 

necessarily transferable to oligotrophic systems that inherently function in a distinct 

ecosystem state (Scheffer et al. 2001; Scheffer & Carpenter 2003).  

Oligotrophic lakes tend to be strongly governed by multiple interacting processes 

that connect various pools of nutrients, with strong feedback effects that maintain 

an oligotrophic state (Scheffer et al. 2001; Carpenter 2003). Cultural eutrophication 

amplifies a specific subset of these interactions within the nutrient cycle, resulting 

in the decoupling of feedbacks (Seekell 2016). Decoupled feedbacks result in a 

press effect (a unidirectional change in ecosystem condition), eventually driving the 

ecosystem past a critical threshold and into an alternate state (Folke et al. 2004; 

Seekell 2016). Understanding the feedbacks that maintain an oligotrophic state is 

critical for management and requires a systems-based approach that integrates 

aspects of lake ecology (e.g., catchment nutrient management and fisheries 

management) that are typically studied and managed independently (Carpenter et 

al. 2011). 

Strong feedbacks can result from temporal and spatial gradients within ecosystems 

(Dong et al. 2017). In oligotrophic lakes these gradients have received substantial 

research attention. The strongest driver of temporal dynamics in lakes is mixing of 
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the water column associated with thermal changes (Lewis 1983; Boehrer and 

Schultze 2008). Water column mixing reintroduces nutrients into the euphotic 

waters. These nutrients have mostly accumulated in the hypolimnion during 

stratification (Boehrer and Schultze 2008; Sommer et al. 2010). Stratification 

results in a surface mixed layer that is often closely related in depth to the euphotic 

zone, resulting in high light availability for phytoplankton entrained in the surface 

mixed layer (Lewis 2010). Depending on water clarity and nutrient availability, 

periods of stratification can be associated with the timing of either maximum or 

minimum phytoplankton abundance, resulting in strong seasonal patterns in pelagic 

phytoplankton abundance (Vincent 1983; Sommers et al. 2010). Periods of 

stratification also determine the vertical distribution of phytoplankton in pelagic 

waters. A metalimnetic peak in phytoplankton abundance, a deep chlorophyll 

maximum (DCM), commonly occurs during stratification in oligotrophic lakes 

(Hamilton et al. 2010; Leach et al. 2017). In contrast to the strong seasonal variation 

in pelagic primary production, production in the littoral zone varies little seasonally 

(Hawes and Smith 1994; Vadeboncoeur et al. 2008). As a result, the relative 

contribution of littoral production to total lake production can vary substantially 

over an annual cycle (Hawes and Smith 1994). Physical exchange of water, and 

thus nutrients, between littoral and pelagic habitats can reduce the seasonal 

gradients of pelagic and littoral production (Boehrer and Schultze 2008; Corman et 

al. 2010), however, mobile consumers are able to adjust their diet to compensate 

for these gradients (Francis et al. 2011; Hayden et al. 2014; Eloranta et al. 2015). 

A growing body of evidence demonstrates that consumers frequently adjust their 

spatial distribution and diet composition according to seasonally available resources 

(McMeans et al. 2015). Along gradients of environmental conditions, planktonic 

grazers vary the depth from which they primarily feed (Winder et al. 2004; Francis 

et al. 2012) and higher trophic level consumers display a wide variation in littoral-

pelagic diet resource use (Vadeboncoeur et al. 2003; Hayden et al. 2014; Eloranta 

et al. 2015). Diet changes in oligotrophic lake food webs provide important 

feedback mechanisms that help maintain an ecosystem within a given state 

(Vadeboncoeur et al. 2005). Associated changes in distributions of mobile 

consumers additionally have the potential to change a habitat from a source to a 

sink of consumer excreted nutrients. In nutrient depauperate ecosystems, consumer 

nutrient recycling (CNR) can be a significant localised nutrient source (McIntyre et 

al. 2008; Spooner et al. 2013). The role of CNR in maintaining resilient ecosystem 
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function in oligotrophic lakes is rarely considered. More generally, most 

assessments of oligotrophic lakes do not consider food web dynamics, CNR, and 

seasonally varying physical conditions in an integrated manner. Understanding the 

interactions between these ecosystem processes is critical for oligotrophic lakes 

where feedbacks are particularly strong. Such integration requires consumer-scale 

through to lake-scale processes to be synthesised.  Practically, such an integrated 

assessment requires novel methodologies and a more detailed and process-focused 

approach on ecosystem components.  

1.2 Methodological approaches 

Stable isotopes provide a method to quantify multiple ecosystem processes in an 

integrated way and to consider interactions between nitrogen cycling and food web 

dynamics (Robinson 2001; Middelburg 2014). Distinct isotopic fractionation 

effects on δ15N values at each step of the nitrogen cycle enable tracing of the 

movement of nitrogen from catchment sources into a lake and through the food 

chain. An even greater degree of resolution is gained when δ15N measurements are 

paired with those of δ13C of organic components and δ18O of dissolved nitrate (del 

Rio 2009; Xue et al. 2009). Stable isotope analyses have been used on fluxes of 

nitrogen associated with organic matter decomposition (Michelsen et al. 1996; 

Menge et al. 2011), nitrification (Finlay et al. 2007), denitrification (Johannsen et 

al. 2008; Wells et al. 2016), anaerobic ammonium oxidation (Buchwald et al. 2012; 

Gammons et al. 2010), ammonium volatilisation (Tozer et al. 2005; Fogel et al. 

2008), atmospheric deposition (Anisfeld et al. 2007; Barnes et al. 2012), N-fixation 

(Kohzu et al. 2008; Ryabenko et al. 2012), autotrophic nitrogen uptake (Michelsen 

et al. 1996; Deutsch et al. 2009; Menge et al. 2011), animal and human septic waste 

inputs (McLarin et al. 1999; Anisfeld et al. 2007; Barr et al. 2013), dietary 

assimilation (Minagawa & Wada 1984; Peterson & Fry 1987) and cross-ecosystem 

subsidies (Helfield & Naiman 2001; Harding et al. 2006). Broadly, this body of 

literature can be categorised into two groups: work analysing trophic dynamics 

using organic δ15N and δ13C analyses and work analysing dissolved nitrogen 

cycling using ammonium δ15N as well as nitrate δ15N and δ18O. Rarely is research 

from these two fields integrated, although there are exceptions (e.g., Kristensen et 

al 2016 and Norman et al. 2017). Simultaneously combining nitrogen cycling and 

food web dynamic studies presents a powerful tool to understand the effects of CNR 

in oligotrophic lakes.  



 

4 

1.3 Study setting: Lake Taupō 

In this thesis I use Lake Taupō as a case study ecosystem for investigating the 

interactions between nitrogen cycling and food web dynamics. Lake Taupō is a 

large (area 616 km2), deep (max. depth 155 m), oligotrophic lake in New Zealand’s 

central North Island. It is the second largest lake in Oceania, consisting of a single 

deep basin within a rhyolitic caldera formed (in its current state) around 1800 years 

before present (232 AD) during the Hatepe eruption (Hogg et al. 2012). The Hatepe 

eruption blew out with an easterly orientation, resulting in steep plunging cliffs 

along most of western and northern shorelines and more gradually inclined beaches 

along the southern and eastern shores (Hawes and Smith 1994). This morphology 

results in relatively limited area of littoral habitat; approximately 9% of the lake 

surface area. Lake Taupō has a relatively small catchment area (3,487 km2) for its 

volume, resulting in a long residence time of 10.5 years. The Waikato River, which 

drains to the north, is the sole outlet.  

Lake Taupō is monomictic, typically being stratified for 288 ± 21 days per year 

(Piet Verburg, NIWA, unpublished data). Exceptional years of incomplete mixing 

are associated with El Niño weather patterns (Hamilton et al. 2013). Pelagic 

primary production is maximal during winter and, as such, winter mixing duration 

and depth are important determinants of production in the lake (Vincent 1983). The 

typical annual pattern is due to a combination of mild winter conditions (the 

duration of winter day-light does not fall below 9.5 hours), nutrient depauperate 

waters and high water clarity. During this time, the phytoplankton community is 

dominated by diatom species (Vincent 1983). Summer pelagic primary production 

is characterised by a DCM comprising a similar diatom community to winter mixed 

conditions (Hamilton et al. 2010). Colony forming cyanobacteria (Dolichospermum 

sp.) and chlorophytes (Botryococcus sp.) can occur periodically in the surface water 

during calm periods of late summer stratification. The catchment has abundant 

highly soluble phosphorus-rich volcanic rock (e.g., pumice) which, in combination 

low catchment nitrogen inputs, results in low N:P in inflows (Vincent 1983). 

Pelagic primary production in Lake Taupō is therefore considered to be N-limited 

(White and Payne 1978; Vincent 1983; Vant 2013). 

In its current oligotrophic state, Lake Taupō provides a range of ecosystem services. 

It is an iconic waterbody that has significant cultural, recreational and economic 

values for New Zealanders (Vant 2013). The shores of Lake Taupō are the ancestral 
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home of the iwi (tribe) Ngāti Tūwharetoa and the lake itself is considered a tupuna 

(ancestor) and resource for mahinga kai (food gathering; Tūwharetoa Māori Trust 

Board 2017).  Lake Taupō is used as a reservoir for hydroelectric generation along 

the Waikato River, producing > 10% of national electricity needs (Mercury Ltd 

2017). Lake Taupō, including its riverine inflows, is important for recreation. In 

addition, 28 m3 s-1 is diverted from adjacent catchments to the south-east of Lake 

Taupō into the lake via the Tongariro Power Scheme. This scheme was 

commissioned in 1976 and reduced the residence time from 13.5 to 10.5 years 

(Hamilton and Wilkins 2005).  Lake Taupō supports an internationally renowned 

rainbow trout (Oncorhynchus mykiss: Salmonidae) sport fishery, which was 

established after releases in the late 19th century (Rowe 1993). A study based on 

1998 data (McDermott Fairgray 2001) indicated that tourism was the largest 

contributor ($90 million) to the annual local gross domestic product ($177 million) 

and that trout fishing alone contributed $70 million annually. 

1.4 Lake Taupō water quality management 

In the late 1990s and early 2000s public concern began to grow over decreased 

water quality in Lake Taupō and, in particular, an atypically severe cyanobacterial 

bloom in the northern bays during the 2002/2003 summer (Hamilton and Wilkins 

2005). Over this period a trend of increasing total nitrogen coincident with 

increasing chlorophyll-a (Chl-a) concentration was detected in Lake Taupō 

(Hamilton and Wilkins 2005; Vant 2013). Concern about declining water quality 

precipitated research to quantify the catchment nitrogen budget. The catchment 

nitrogen budget was divided into background natural sources beyond the scope of 

management intervention (non-manageable) and sources that were the result of 

anthropogenic modification to the catchment (manageable). Agricultural land-use 

was identified as the primary contributor to the manageable N-load (Table 1-1). 

Stakeholder consultation (iwi and the wider public) and freshwater scientists 

developed lake water quality targets for management. These qualitative targets were 

benchmarked against quantitative water quality monitoring values, and water 

quality parameters extant in 2001 were set as management targets (Table 1-2).  

Table 1-1: Contributions of primary sources of N to Lake Taupō, divided into manageable (grey shaded) and 

non-manageable sources (see text), used to inform catchment N management. Values were adapted from 

Waikato Regional Plan 3.10 (2011). *The Tongariro Power Scheme constitutes a source of diverted water from 

outside of the catchment. 

Source Load (t yr-1) Percent Effective yield 

(kg N ha-1 yr-1) 
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Atmospheric deposition 272 20% 4.2 

Undeveloped land 331 23% 4 

Tongariro power scheme* 87 6%  

Pine on unimproved land 112 9% 2 

Pine on unimproved pasture 12 1% 2.7 

N-fixing scrub (gorse & broom) 7 <1% 12 

Pine on improved pasture 3 – 8 <1% 4.2 – 6 

Non-dairy pasture 442 33% 8.6 

Dairy pasture 68 5% 29 

Urban run-off 16 1% 8 

Sewage 17 1%  

Total Approx. 1367 - 1372   

 

A new legal framework was developed for managing Lake Taupō water quality.  

The 2001 water quality attributes were mandated as Objective 1 in the Waikato 

Regional Plan Variation Five (RPV 5 – operative, chapter 3.10 in the Waikato 

Regional Plan as of 2011). A lake water quality model (DYRESM-CAEDYM) was 

used to calculate required catchment N-load reductions for long-term restoration of 

lake water quality (Spigel 2001). In order to achieve Objective 1 (requiring targets 

to be reached by 2080), manageable catchment nitrogen emissions were capped 

(Policy 3) and a nitrogen reduction target of 20% of the 2001 load from land use 

activities was instated with provision for 10-year review of the target required to 

achieve Objective 1 (Policies 4 and 5) (Waikato Regional Plan 3.10 2011). This 

necessitated management of land-use activities to reduce nitrogen leaching, 

particularly from farming activities, to facilitate restoration to water quality levels 

of 2001, set out in Objective 2 (Waikato Regional Plan 3.10 2011).  

Managing catchment N loads required modification of land property rights. The 

management of the nitrogen cap was enabled through setting N discharge rights for 

properties based on their average 2001 leaching rates from the rooting zone of 

plants. The required 20% reduction was applied across all properties, to be achieved 

incrementally over 15 years from 2005. Nitrogen allocation enabled discharges to 

be traded between rights owners within the catchment, creating a flexible 

management framework. An $81.5 million public fund, supported by central and 

local government, was initiated to then buy back cost-effective portions of the 
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targeted 20% of manageable catchment load from right holders. This was a 

mechanism to incentivise land-owners to convert their agricultural land to low-N-

emission land-uses such as forestry. The cap-and-trade nutrient management 

system implemented for Lake Taupō was considered an innovative case-study 

internationally, and it is a world-first example of setting N limits for restoration of 

lake water quality (Abell et al. 2010; Duhon et al. 2011; Schindler et al. 2016).  

Table 1-2: 2001 water quality attributes in Lake Taupō set as management targets to be maintained by 2080. 

Values adapted from Waikato Regional Plan 3.10 (2011). 

Water quality attribute Mean Standard 

dev. 

Unit 

Total nitrogen (TN) 70.3 19.1 (mg m-3) 

Total phosphorus (TP) 5.6 1.4 (mg m-3) 

Chlorophyll a (Chl-a) 1.2 0.6 (mg m-3) 

Secchi depth 14.6 2.7 (m) 

 

1.5 Science gaps within the current management  

The Lake Taupō Catchment Water Quality Management Plan focuses on protecting 

values which are held in high regard by the community. It includes opportunities 

for adaptive management that could include new science related to the most 

important values: clear water in the lake, water of high quality flowing into the lake 

and good trout fishing (Waikato Regional Plan 3.10 2011). Initially, no attributes 

of Lake Taupō food web constituents beyond pelagic primary production (Chl-a) 

were explicitly included in the plan. In 2006 the rainbow trout population began a 

rapid year-on-year decline which saw the weight, condition factor (weight/length) 

and catch rate (catch per unit effort; CPUE) of anglers’ catches concomitantly 

decline. Trout size and abundance have since remained low for over a decade 

(Figure 1-1). Anecdotal evidence suggested that caught trout had noticeably fewer 

smelt (Retropinna retropinna – a pelagic zooplanktivore and predominant food 

source) in their stomachs, and therefore that the pelagic food chain may have 

undergone a drastic decline. The unexpected nature of the trout population decline 

highlighted the limited understanding of food web dynamics in Lake Taupō and 

particularly how these dynamics interact with pelagic primary production, and 

management thereof. This is an important consideration for the overall management 

of the lake given the importance of trout for the Lake Taupō fishery as well as 

indigenous species such as kākahi (freshwater mussel, Echyridella menziesi) and 
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kōura (freshwater crayfish, Paranephrops planifrons) which are taonga (treasured) 

species for Ngāti Tūwharetoa. Given the potential for food web dynamics to 

influence nutrient availability and Chl-a concentrations, it is also an important 

consideration for water quality management (i.e., Waikato Regional Plan 3.10 

2011).  

 

Figure 1-1: Records of annual trout biomass (fish symbols) recorded at the Waipa fish trap and mean winter 

(June – August) chlorophyll a concentration (green circles) between 1998 and 2015 in Lake Taupō.  

 

Established food web theory can, to an extent, provide information on the 

interactions between pelagic production and food web dynamics. Pelagic food 

chains, such as in Lake Taupō, are characterised by strong trophic interactions 

between few consumers (i.e., predators’ diet consists of few species) (Blanchard et 

al. 2010). Such food chains commonly undergo predator-prey stable limit cycles 

(Lotka-Volterra oscillations) due to the strong predator-prey interactions 

(Vadeboncoeur et al. 2005; Barraquand et al. 2017). This suggests that trout and 

smelt populations should naturally vary year-to-year. However, increased 

productivity typically accentuates these oscillations, resulting in food web 

destabilisation (Vadeboncoeur et al. 2005; Blanchard et al. 2010; Ward et al. 2015). 

Varying pelagic consumer abundances are expected to have flow-on effects for 

predation on littoral food chain consumers such as kākahi and kōura (Vadeboncoeur 

et al. 2005; Ward et al. 2015). Furthermore, given that consumer biomass 
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constitutes a high proportion of the N pool in oligotrophic lakes, relative to N-

enriched systems, food web dynamics may also have a substantial impact on 

productivity through the contribution of consumer excretion to phytoplankton N 

demand (Dong et al. 2017). Understanding how these independent theories 

specifically apply to Lake Taupō requires a detailed ecosystem-level study. For 

example, given the dominant role of seasonal mixing-stratification cycles in 

structuring pelagic productivity (Vincent 1983), food web interactions and nutrient 

recycling feedbacks are expected to be highly seasonally sensitive. Limited 

understanding of how nutrient cycling and food web dynamics interact is also a 

feature of lakes globally (Vanni et al. 2013). Given the commonalities of Lake 

Taupō with other oligotrophic lakes globally, detailed findings from a system-

specific study will enhance ecological understanding for oligotrophic lakes 

generally.   

1.6 Thesis outline 

The objective of this thesis is to improve understanding of how food web dynamics 

interact with nutrient cycling in large monomictic Lake Taupō. This information is 

fundamental to understanding ecosystem structure and functioning of large 

oligotrophic lakes globally, and for managing water quality and food web processes 

in Lake Taupō specifically. The thesis has four chapters and a concluding synthesis, 

which collectively test the overriding hypotheses that: i) reciprocal interactions 

between nitrogen cycling and food web dynamics play a significant role in 

structuring the Lake Taupō ecosystem; and ii) these interactions are seasonally 

dependent.  

This thesis addresses the hypotheses using a literature review and three chapters 

examining data collected over an annual cycle (September 2014 – August 2015).  

Chapter 2 is a review of current literature on food web dynamics and nutrient 

cycling. It summarises commonly accepted primary components of lake nutrient 

cycles, hydrodynamic and biogeochemical processes, and synthesises this 

information to provide a current understanding of the role of CNR. Emerging 

concepts from food web literature are then synthesised and integrated with CNR 

concepts to provide novel insights into the role of CNR in lakes, particularly during 

stratification. General scaling patterns for food web structure are used to 

demonstrate how expected seasonal food web patterns in lakes can determine the 

contributions of CNR.  
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Chapter 3 uses δ15N and δ13C stable isotope analyses of the primary pelagic and 

littoral food web components collected over a complete annual cycle to examine 

food web responses to seasonal patterns in pelagic productivity. The results 

demonstrate that a combination of top-down and bottom-up interactions control 

phytoplankton-zooplankton interactions over the annual cycle. Higher trophic 

levels, meso- and top-predators respond to changes in lower trophic levels by 

switching their diet from pelagic to littoral prey as pelagic resources decline.  

Chapter 4 involves utilisation of δ15N-NH4
+, nitrate δ15N and δ18O and, POM- δ15N 

isotopes to examine the contribution of CNR to nitrogen cycling in Lake Taupō 

over an annual cycle. Consumer nutrient excretion incubations were used to 

determine δ15N-NH4
+ excretion values to validate that CNR results in 15N-deplete 

DIN pools and to examine relationships between zooplankton excretion and 

ambient water δ15NH4
+ values. Zooplankton contribute substantially to ammonium 

availability in the DCM layer. At the lake scale, CNR was found to be greatest 

during late summer stratification when the lake was net-heterotrophic. 

Chapter 5 uses a 3D hydrodynamic model simulation with hypolimnetic and 

epilimnetic tracers, to quantify exchange of water between littoral, hypolimnetic, 

metalimnetic and epilimnetic habitats of Lake Taupō. These data were analysed 

with nutrient concentration and stable isotope data to examine the comparative and 

interactive effects between physical transport and recycling (inferred from stable 

isotope data) over an annual cycle. The results demonstrate complex interactions 

between nutrient recycling and hydrodynamics within the DCM and that these can 

be quite independent from surface waters. Seasonal estimates for physical transport 

of littoral dissolved inorganic nitrogen (DIN) to the epilimnion were then 

incorporated into a surface water DIN mass-balance model including hypolimnetic 

upwelling, N-fixation, atmospheric deposition, riverine N load, and excretion of 

littoral-derived N from mussels, smelt, bullies and trout which was balanced against 

phytoplankton uptake to solve for in situ recycling. Results suggest that smelt 

excretion transports more littoral N to the epilimnion during early stratification than 

physical water exchange and that in situ recycling accounts for > 75% of 

phytoplankton N-demand.  

The four research chapters which comprise this thesis collectively demonstrate the 

importance of considering food web –nitrogen cycling interactions in Lake Taupō. 

When synthesised and integrated with the wider literature, the findings of this thesis 
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provide a novel understanding of the role of nutrient-food web interactions in 

oligotrophic lakes generally.  

Each of the research chapters has been written in the first instance as a manuscript 

for submission to a peer-reviewed scientific journal. As such, formatting varies 

lightly between chapters so that each confirms to target journal requirements. 

Furthermore, to keep integrity with submitted and published work, collective 

pronouns (i.e., ‘we’ and ‘our’) are used rather than the personal pronouns (‘I’ and 

‘me’) which are used in the thesis introduction and conclusion. Except when 

referenced, the material in this thesis was produced from my own ideas and research 

while working under the chief supervision of Prof. David Hamilton and Dr Ian 

Duggan, and the supervisory committee of Prof. Troy Baisden, Dr Piet Verburg and 

Prof. Brendan Hicks. Where specialist assistance was received for specific chapters, 

additional co-authors were included. Chapter 3 was published in Freshwater 

Biology, chapter 2 is accepted in Hydrobiologia and chapter 4 will imminently be 

submitted to Limnology & Oceanography. Chapter 5 has been prepared to be 

submitted at a later date.  
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2. Chapter two 

The role of mobile consumers in lake nutrient 

cycles: a brief review 

This chapter was published as: Stewart, S. D., Hamilton, D. P., Baisden W. T., 

Verburg, P., Duggan I. C. 2018. The role of mobile consumers in lake nutrient 

cycles: a brief review. Hydrobiologia DOI: 10.1007/s10750-018-3603-2 

2.1 Abstract 

We summarise current understanding of consumer recycling in lake nutrient cycles 

and expand on it by integrating emerging knowledge from food web ecology. The 

role of consumer nutrient recycling (CNR) is initially framed in the wider context 

of lake nutrient cycling, which includes hydrodynamic and biogeochemical 

processes, and their responses to global environmental change. Case studies are 

used to demonstrate that effects of CNR on lake ecosystems range widely, from 

reduced nutrient cycling rates to exacerbation of eutrophication. CNR depends on 

consumer biomass, body size and diet, remaining relatively consistent through the 

year and becoming important as other fluxes seasonally ebb.  Universal patterns in 

food web structure, for example, consumer-resource biomass ratios, body size 

scaling and relationship between trophic level and diet breadth, are used to 

demonstrate the predictability of CNR effects. Larger, mobile, top predators excrete 

nutrients at a lower rate but over a wider spatial range, linking nutrient cycles across 

habitats. Smaller-bodied, lower trophic level consumers have strong localised 

nutrient cycling effects associated with their limited mobility. Global 

environmental change drivers that alter food web structure are likely to have the 

greatest impact on CNR rates and should direct future studies.  

Key words: food web, recycling, excretion, body size, biomass, littoral pelagic 

coupling 

2.2 Introduction 

Nutrient cycling is a critical process governing ecosystem function in lakes 

(Vitousek et al., 1997; Carpenter et al., 2011). It mediates the eutrophication from 

catchment nutrient inputs and determines the extent of productivity available to 

higher trophic levels (Smith and Schindler, 2009; Moss, 2012). Arguably, 

eutrophication represents the most pressing challenge to the stability of lake 
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ecosystems (Carpenter et al., 2011) and, accordingly, nutrient cycling has received 

substantial research attention in limnology for over 60 years. This has resulted in 

catchment (Hamilton et al., 2016), physical hydrodynamic (Boehrer & Schultze, 

2008), and microbial biogeochemical processes (White et al., 1991; Cotner & 

Baddina, 2002; Finchel, 2008) being integrated into nutrient cycling models. This 

integration has substantially improved the understanding of nutrient cycling in lakes, 

particularly through demonstrating interactive effects between processes (Lewis, 

2010; Moss, 2012). Interactive effects have demonstrated that rapid threshold 

changes in nutrient supply can occur with small environmental changes which 

affect multiple processes. For example, in deep lakes, climatic and catchment 

drivers can interact with hydrodynamic and biogeochemical processes resulting in 

hypolimnetic anoxia and strongly elevated sediment nutrient releases (Lehmann et 

al., 2015; Jenny et al., 2016). However, the drivers of change in nutrient cycling 

rates, particularly for oligotrophic lakes, remain uncertain (Lewis, 2010; Moss, 

2012). The development in understanding of lake nutrient cycling models is 

currently limited by knowledge of several critical processes driving temporal and 

spatial variation in nutrient cycling rates. 

Consumer nutrient cycling (CNR), the role of large mobile consumers on nutrient 

cycles, is one such area that is yet to be integrated into lake nutrient models. 

Microbial biogeochemical cycling is the dominant mechanism for regenerating 

bioavailable nutrients (White et al., 1991; Cotner & Baddina, 2002; Finchel, 2008). 

However, a growing number of case studies have demonstrated that mobile 

consumer recycling can also have a significant effect on nutrient cycles (He et al., 

1992; Schindler et al., 1993; Layne & Vanni, 1997; Attyade & Hansson, 2001; 

Vanni et al., 2006). Specifically, the ability of many larger consumers to move 

between habitats (Vanni et al., 2006; Baustain et al., 2014) paired with long 

(generally > 1 year) consumer life cycles (Schostell & Bukaveckas, 2004), control 

nutrient cycling through displacement of nutrients in time and space. Despite the 

substantial impact of consumer nutrient recycling (CNR) on nutrient cycles at a lake 

ecosystem scale (Carpenter et al., 1987; Carpenter et al., 1992; Allgeier et al., 2017), 

there is no general conceptual framework for understanding the role of CNR.  Food 

web theory has been used to understand the dynamics of consumer communities, 

with particular reference to factors controlling biomass fluctuations (Thompson et 

al., 2012; Barraquand et al., 2017). Applying food web theory to understanding 

CNR may provide clarity on the contribution of this process to lake nutrient cycles. 
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Recent developments in food web ecology show general, scalable patterns of food 

web structure, which have the potential to elucidate the role of CNR. Food web 

research as a whole has focused heavily on the role of complexity in providing 

resilience to external stressors and how internal feedbacks can drive fluctuations 

(Layman et al., 2015; Barraquand et al., 2017). Attempts to describe complexity 

have identified common patterns across a diverse range of food web structures. For 

example, the number and strength of consumer‒resource trophic links has been 

associated with important food web attributes such as productivity (Neutel et al., 

2007), stability (McCann et al., 1998) and top-predator abundance (Estes et al., 

2012).  This approach has led to ‘rules of thumb’ for scaling across biomes, which 

enables ecosystem function to be predicted from observations of food web 

architecture (Thompson et al. 2012). These scaling rules can be extended to better 

understand how food web structure affects nutrient cycles via CNR (Thompson et 

al., 2012; Layman et al., 2015).  

Food web structure can affect the magnitude of CNR fluxes and the availability of 

nutrients for primary producers (Carpenter et al., 1992; He et al., 1992; Vanni et al., 

2013; Higgins et al., 2014). Integrating current food web knowledge with CNR-

mediated processes may provide a mechanism for identifying and mitigating non-

linear threshold responses. Most of the focus of critical threshold responses to date 

has been on non-linear primary productivity responses, establishing the concepts of 

alternate states or regime shifts of the dominant primary producers (Carpenter et al., 

2005; Scheffer et al., 2012; Angeler and Allen, 2016) and the resultant changes in 

phytoplankton biomass (Carpenter, 2003). The effect on, and responses of, mobile 

CNR have received substantially less attention (Carpenter et al., 1992; Sterner, 

2008). 

An approach of drawing on food web science could promote ecosystem-based lake 

and fisheries management to complement the current nutrient management 

paradigm. The aim of this review is therefore to synthesise emerging concepts from 

food web ecology in order to promote integration of CNR into assessments of 

nutrient cycling at whole-lake scale. This review covers: 

(1) a brief examination of contemporary understanding of the roles of 

hydrodynamic and microbial biogeochemical processes in lake nutrient cycles; 

(2) a review of current literature on mobile CNR; 

(3) a summary of emergent macro-scale patterns in lake food web ecology; 
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(4) application of common patterns in food web ecology that inform CNR; 

(5) discussion and comparison of the factors driving critical nutrient responses to 

hydrodynamic, biogeochemical and CNR processes. 

2.3 Current concepts of lake nutrient cycling 

Historically, progress in understanding primary productivity responses to nutrients 

in lakes can be viewed as “demystifying the black box” (Figure 2-1). At an 

elementary level, the earliest workers regarded lakes as largely closed systems 

independent of their terrestrial environment (Forbes 1887). The advent of cultural 

eutrophication (Vallentyne 1974) provided an underlying impetus to connect lake 

responses to changes in catchment nutrient loads. This environmental phenomenon 

was fundamental to the development of catchment nutrient load models (e.g., 

OECD 1982). Interest in the time-varying responses of lakes, particularly connected 

to seasonal mixing-stratification cycles (Imberger and Patterson 1990), led to focus 

on how nutrients are transported within lakes (Boehrer & Schultze 2008). Food web 

responses add a further layer of complexity, but are necessary to understand 

ecological responses to changing catchment nutrient loads (Sommer et al. 2012; 

Allgeier et al. 2017). Such responses are yet to be integrated into dynamic lake 

system models to the resolution that has been achieved for hydrodynamic or 

biogeochemical processes (Fussman et al. 2008; Hellweger 2017). 

Controls on nutrient cycling have traditionally been viewed as hierarchical, 

predominantly from catchment loads down to in-lake hydrodynamic processes 

(Vollenweider 1974; Boehrer & Schultze 2008), but there is increasing recognition 

of the role of recycling, which cuts across this hierarchy at multiple levels, from 

microbial transformations through to higher levels in the food web. In this context, 

broad generalisations of the relative importance of the different controls are less 

easily made due to geographical, morphological and ecological variations amongst 

lakes. For example, physical mixing has a greater role in nutrient supply for lakes 

closer to the poles, while biogeochemical cycling is relatively more important in 

equatorial lakes (Kilham & Kilham 1990; Lewis 2010). Figure 2-1 shows the 

trajectory that studies into lake hydrodynamics and biogeochemistry have taken; 

there is a vast amount of accumulated knowledge and current research on these 

topics. We provide brief contemporary summaries on these two topics to lay a 

foundation for a review of CNR in lakes and to prepare for changes expected under 

global environmental change.  
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Figure 2-1: “Demystifying the black box” of lake responses to nutrient inputs based on progression in the 

understanding of the controls on lake nutrient cycling. Seminal papers are listed against major advances. 

 

2.3.1 Hydrodynamic mediated nutrient cycling 

Turbulent mixing processes operate over a wide range of scales, from entire lakes 

(e.g., basic-scale seiching; Antenucci and Imberger, 2001) to millimetres (e.g., 

Kolmogorov scale; Wüest and Lorke, 2003). Here we focus on thermal stratification 

and other large-scale processes. The periodicity of complete water column mixing 

(i.e., frequency of mixis), as well as trophic state, are the most common ways in 

which lakes are characterised. Water column mixing allows oxygen-rich surface 

water to be transported to profundal habitats and reintroduces nutrients which have 

accumulated in the hypolimnion into surface waters. Thermal stratification hinders 

mixing between surface and bottom waters. Particulate material that is denser than 

water sinks rapidly under the prevailing density gradient and nutrients recycled 

from this material accumulate in bottom waters. The mixing of bottom waters and 

surface waters in stratified lakes can be a significant nutrient input into the surface 

trophogenic zone, and stimulates production (O’Reilly et al. 2003; Verburg et al. 

2003; Boehrer and Schultze 2008). Complete water column mixing (i.e., 

redistribution of nutrients through the lake volume) may alleviate phytoplankton 

nutrient limitation and can be associated with an annual peak of phytoplankton 
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production in some temperate (Vincent 1983) and many tropical lakes (Lewis 1996; 

Lewis 2013), while in other lakes it may be associated with the annual minimum of 

production (Boehrer and Schultze 2008; Sommer et al. 2012). The response of 

primary production to mixing is regulated by lake depth and water clarity, as well 

as the extent of alleviation of nutrient limitation (Vincent 1983). Localised nutrient 

introductions from the hypolimnion into trophogenic waters, in the absence of 

complete mixing, can alleviate nutrient limitation, albeit temporarily, even in the 

presence of strong stratification. Upwelling events that introduce hypolimnetic 

water into near-shore littoral zones may be associated with wind-derived currents 

(Bocaniov et al. 2014) or more generally with large-scale and small-scale 

turbulence (Boehrer and Schultze 2008; MacIntyre et al. 2009) driving substantially 

elevated littoral production (Corman et al. 2010). Similarly, shallow littoral areas 

may show strong diurnal gradients in temperature, which can drive vertical 

exchange with metalimnetic waters or horizontal exchange with offshore pelagic 

waters (Monismith et al. 1990; Boehrer and Schultze 2008).  

Hydrodynamic responses to global environmental change drivers – Most physical 

transport mechanisms are extremely sensitive to climate warming (Boehrer and 

Schultze 2008; Adrian et al. 2009; Kraemer et al. 2015). Warmer air temperatures 

increase the energy accumulated in the surface waters of lakes and result in 

prolonged and stronger thermal stratification. This may ultimately lead to 

incomplete mixing of monomictic or dimictic lakes that currently mix fully on 

annual cycles (Adrian et al. 2009; Sahoo et al. 2015) and lead to some polymictic 

lakes becoming persistently stratified on seasonal time scales (Kraemer et al. 2015). 

Prolonged climate-induced stratification has been linked to later timing of autumn 

blooms in Lake Washington (Winder and Schindler 2007) and reduced pelagic 

productivity in Lake Tanganyika (Verburg et al. 2003; O’Reilly et al. 2003). A 

predicted stronger thermocline in Lake Tanganyika, due to climate warming, is 

expected to also reduce the magnitude of upwelling into the littoral zone and reduce 

the observed remarkably high rates of littoral production (Corman et al. 2010). In 

temperate and Arctic lakes, a reduction in periods of weak stratification has been 

linked to reductions in the frequency of pelagic upwelling events (Bokaniov et al. 

2014; Poschke et al. 2015; Troitskaya et al. 2015). Whether climate warming 

ultimately increases or decreases productivity may be highly lake specific and could 

also have strong seasonality (O’Reilly et al. 2015). For example, prolonged 

stratification could potentially eliminate seasonal overturn events in some large 
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lakes whilst reducing upwelling events in most lakes. Reduced upwelling could 

reduce productivity, but may also fuel increased productivity at overturn in 

association with prolonged build-up of nutrients in the hypolimnion, especially if 

upwelling brought about extended periods of anoxia and large sediment nutrient 

releases (Sahoo et al. 2015).    

2.3.2 Biogeochemical nutrient cycling mediated by the microbial loop 

Microbial recycling is the primary mechanism for regenerating nutrients from 

organic matter (Paerl and Pinckney 1996; Cotner and Baddina 2002). Bacteria and 

protozoa adhere to and metabolise detrital particles, releasing dissolved nutrients 

for uptake by primary producers (Paerl and Pinckney 1996; Biddanda et al. 2001; 

Fenchel 2014). Free-living microbes also metabolise dissolved organic nutrients 

that would otherwise be unavailable to primary producers. In lakes, most microbial 

nutrient recycling occurs in the benthos where organic matter accumulates (Moss 

2012; Jenny et al. 2016). Higher relative benthic recycling rates typically results in 

nutrients accumulating below the thermocline during periods of stratification 

(Verburg et al. 2003; O’Reilly et al. 2003; Lehman et al 2015). By contrast, where 

microbial metabolism of organic particles or dissolved organic matter occurs above 

the thermocline, nutrients are likely to be retained within the trophogenic zone, 

leading to tight coupling of productivity to microbial mineralisation (Kilham and 

Kilham 1990). The importance of microbial cycling to productivity varies 

substantially amongst lakes and is partly associated with the balance of bottom-up 

and top-down regulation of productivity (Ptacknic 2010). 

While top-down control of productivity by heterotrophic microbial communities 

has traditionally been considered a minor structuring effect, there is growing 

recognition of strong interactions among microbial communities (Ptacknic 2010; 

Beisner 2001). Environmental filtering (bottom-up control of community 

composition) is a dominant structuring mechanism (Beisner et al. 2006), but others 

typical of macrofaunal communities, such as predator-prey interactions and 

competition (Ptacknik et al. 2014), are also present in microbial communities. 

These interactions can directly control rates of nutrient cycling. For example, 

nitrification may be regulated by microbial predation (Lavrentyev et al. 1997). Top-

down control of heterotrophic bacteria by predatory protozoa has also been shown 

to inhibit phytoplankton growth due to reduced nutrient availability (Steiner et al. 

2005; Li and Stevens 2010; Ptacknik et al. 2010). The composition of microbial 
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communities in lakes therefore affects rates of nutrient recycling and primary 

production. 

Bottom-up control of microbial processes is primarily due to temperature and 

nutrient availability (Cottner and Biddanda 2002). Microbial metabolism increases 

with temperature, and nutrient recycling rates are correspondingly higher towards 

the equator (Lewis 2010). Microbial growth rates also increase with nutrient 

availability whilst maintenance costs decrease, resulting in increased growth 

efficiencies (White et al. 1991). Microbial communities in nutrient-rich lakes, 

especially those in lakes of warmer regions, are therefore able to convert a greater 

proportion of their nutrient intake into biomass than those in nutrient-depauperate 

lakes. 

Biogeochemical responses to global environmental change drivers – Strong 

temperature controls on microbial metabolism suggest that microbial communities 

will be sensitive to climate warming (Paerl and Pinckney 1996; Carey et al. 2012; 

Amando et al. 2013). Observed latitudinal patterns in microbial metabolism and 

phytoplankton community composition have been the primary basis for projected 

biogeochemical responses to warming. Higher microbial recycling rates are 

observed in lower latitude, i.e., warmer lakes (Kilham and Kilham 1990; Lewis 

2010; Amando et al. 2013). Within phytoplankton communities, heat-tolerant 

cyanobacteria are present in higher proportions than eukaryotic phytoplankton in 

tropical lakes compared with temperate lakes (Kilham and Kilham 1990; Lewis 

2010). Abundance of cyanobacteria is expected to increase in lakes globally as a 

result of climate warming, particularly in temperate lakes (Carey et al. 2012; O’Neil 

et al. 2012). Changes in phytoplankton communities and higher overall growth rates 

of phytoplankton are expected to increase the strength of nutrient cycling 

interactions between microbial heterotrophs and phytoplankton under climate 

warming (Lewis 2010). Recent laboratory experiments demonstrate that 

phytoplankton N demands increase with temperature faster than P demands (Thrane 

et al. 2017), suggesting that microbial-phytoplankton N cycling interactions will be 

more sensitive to warming than for P cycling.  

The impact of climate warming on top-down controls on microbial nutrient 

recycling has received relatively little attention. Top-down effects on microbial 

nutrient recycling would be expected to change in a non-linear way if distinct 

heterotrophic microbial functional groups had different responses to warming 
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(Sentis et al. 2017). There is, however, little empirical evidence that supports this 

hypothesis. The best indication of potential responses may come from observations 

of the response of macrofauna (i.e. predator-prey dynamics) to changes in 

temperature (Ptacknic et al. 2010) and will benefit from an improved understanding 

of CNR.  

 

2.4 Mobile consumer nutrient recycling 

Based on two ecological principles, mobile consumers are often considered to have 

insignificant effects on nutrient recycling compared with microbial consumers. The 

first principle is that biomass of consumer species in an ecosystem is invariably 

negatively related to average body size (Cohen et al. 2003) and therefore microbial 

consumers will dominate biomass within lakes (Cotner and Baddina 2002). The 

second is that mass-specific metabolic rates scale negatively with body size (Brown 

et al. 2004; Hall et al. 2007; McIntyre et al. 2008). Therefore, small-bodied 

consumers will excrete more than large-bodied consumers per unit biomass (Hall 

et al. 2007). However, large mobile consumers have several traits that can have 

considerable effects on lake nutrient cycles. These traits include: the ability to move 

rapidly between spatially distinct habitats; lifespans of greater duration than 

seasonal fluctuations in nutrient supply; and the potential to control the distribution 

and biomass of lower trophic levels. Large reductions in ecosystem productivity 

due to loss of spawning salmonid-derived nutrients observed in many boreal 

freshwater ecosystems (Wipfli et al. 2007) highlight the importance of considering 

large mobile consumers, and their traits, for understanding nutrient cycles.  

2.4.1 Translocation of nutrients through CNR 

The role of animal excretion in transporting nutrients between spatially separate 

ecosystem habitats is well documented empirically (Vanni and McIntyre 2016). 

Here we describe several examples involving lakes spanning a range of trophic 

states (oligotrophic to hypertrophic), where fish couple benthic and pelagic nutrient 

cycles. Benthivorous fish excretion can supply nutrients for primary producers in 

the pelagic zone (Vadeboncoeur et al. 2002; Vanni et al. 2005; Sereda et al. 2008). 

Excretion by the  benthic-feeding gizzard shad (Dorosoma cepedianum) can more 

than meet the pelagic phytoplankton P demand, exacerbating eutrophication driven 

by catchment nutrient loads (Vanni et al. 2006). Areas with fish have been shown 

to have higher rates of primary production than areas without fish (McIntyre et al. 
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2008), while biomass of sessile freshwater mussels (Spooner et al. 2013) and 

gardening caddis flies larvae (which actively maintain and defend a territory of 

benthic substrate; Ings et al. 2017) has been positively correlated with biomass and 

diversity of benthic algae.  

The enhancement of primary production by CNR depends on the biomass, feeding 

strategy (e.g., filter or benthic feeders) and diet composition of mobile consumers, 

as well as the nutrient demand of the primary producers. A larger fish standing stock 

will naturally mobilise more nutrients (Schindler et al. 1993), benthivorous fish are 

typically a net source of nutrients for pelagic primary producers (Vanni et al. 2013), 

and impacts on primary producers of consumer recycling will be greatest in low-

nutrient systems (Carpenter et al. 1992).  It follows that the strongest impacts of 

CNR have been attributed to bottom feeding by benthivorous fish which has been 

implicated as a catalyst for tipping lakes from clear, macrophyte dominated states 

to turbid, phytoplankton dominated states (Søndergaard et al. 2008, 2017).  

2.4.2 Temporal variations of CNR 

Temporal variability of nutrient supply can determine primary producer community 

composition (Lagus et al. 2007; Oliver et al. 2012).Through mediating periodicity 

of nutrient pulses, CNR also has significant impacts on community composition 

(Weber and Brown 2013). Biomass, distribution and persistence of microbial and 

micro-invertebrate consumers in lakes typically vary substantially over an annual 

cycle due to changes in resource supply (Sommer et al. 2012). Large-bodied 

consumers, however, can persist over multiple seasons despite such resource 

variations (McMeans et al. 2015). Excretion by larger consumers can therefore be 

a significant source of nutrients during low nutrient periods. Shostell and 

Bukaveckas (2004) demonstrated that, in a eutrophic reservoir, consumer recycling 

became the primary source of pelagic nutrients during periods when catchment 

nutrient loads were reduced. Demand for consumer derived nutrients by pelagic 

primary producers is greatest when nutrients are most scarce, such as during late 

summer in deep lakes after prolonged stratification (Carpenter et al. 1987; 

Carpenter at al. 1992).  Similarly, vertical migration of zooplankton, and their 

excretion in the surface layer at night, may have the greatest impact on pelagic 

primary productivity not necessarily when zooplankton biomass is greatest but 

when pelagic nutrient availability is very low (Baustain et al. 2014). Over annual 

time scales, recycling by consumers can exceed that by microbial consumers 
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(Attayde and Hansson 2001) because the biomass of smaller bodied, lower trophic 

level organisms reduces at a must faster rate than larger bodied higher trophic level 

organisms in response to resource depletion. The consumer traits most influential 

on recycling, including wide foraging range and long lifespans, are inherently 

related to consumer body size (McCann et al. 2005; McMeans et al. 2015).  

2.4.3 Top-down effects on nutrient recycling 

Consumers are able to alter nutrient recycling indirectly through two mechanisms; 

firstly, through the relation between body size and metabolism, and secondly, 

through consumer-resource N:P stoichiometric mismatches. Replacing smaller-

bodied consumers by large consumers will reduce community-level metabolic rates 

and nutrient recycling rates (Hall et al. 2007). In lakes, as for many other aquatic 

ecosystems, body size strongly correlates with trophic position (i.e., size structured 

food web) (Blanchard et al. 2010; McCann et al. 2005; DeLong et al. 2015). Top 

predators tend to be large-bodied while primary consumers are small-bodied. Hence, 

the introduction of a top predator could be expected to reduce the biomass of small-

bodied consumers. An increase in mean consumer body size would decrease 

ecosystem metabolism and nutrient excretion. The effect on nutrient cycling of 

changes in mean consumer body size has been documented in case studies of 

species introductions or removals and the subsequent ecosystem response. 

Schindler et al. (1993) demonstrated that introduction of an invertebrate planktivore 

(Chaoborus sp.) into a lake food web where larger-bodied fish were previously the 

dominant planktivore, increased the rate of phosphorus recycling. Similarly, 

proliferation of invasive filter feeding dreissenid mussels (Dreissena polymorpha 

and D. bugensis) in the Great Lakes has drastically increased the mean body size of 

the filter feeding primary consumer biomass, which was previously dominated by 

smaller bodied crustaceans (Higgins et al. 2014). The resultant reduction in nutrient 

recycling rates, as well as low predation rates on the mussels, has reduced the 

phosphorus availability to phytoplankton and decreased productivity at the lake 

ecosystem scale (Conroy et al. 2005).  

2.4.4 Stoichiometric effects 

Variations in the relative excretion rates of N and P by consumers can influence 

phytoplankton growth responses depending on stoichiometry of the phytoplankton 

demand (Elser et al. 2000). Stoichiometry of consumer excretion is the result of diet 

N:P ratios, as well as consumer species-specific N and P turnover rates. Inter-
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specific differences in N and P requirements arise because various tissue types have 

distinct N and P compositions.  Protein, the largest N pool in organisms, largely 

controls N excretion rates (Hall et al. 2007; Vanni et al. 2013) along with body size 

(i.e., a metabolic control) (Houlihan 1991; Hall et al. 2007). Structural and 

armouring tissue (i.e., bone and scales) is P-rich, and can be a strong predictor of P 

requirements of an organism, while ATP and RNA are the largest labile P pools in 

consumers (Vanni et al. 2013). Requirements for P increase during periods of rapid 

growth because tissue growth requires increased RNA production (Elser et al. 2003).  

A mismatch in N:P composition between the consumer diet and body tissue will 

enhance the excretion of the  nutrient in excess and reduce the excretion of the 

under-supplied nutrient. Cladoceran zooplankton generally have lower N:P ratios 

and greater P demand than copepods, resulting in an increase in water column N:P 

when cladocerans dominate (McCarthy and Irvine 2010; Sterner and Elser 2002). 

Fish predation of cladocerans can, in turn, increase phytoplankton production in P-

limited systems by promoting higher P recycling rates (Sterner and Elser 2002).  

The examples presented above demonstrate mechanisms by which the size of 

mobile consumers can have a substantial influence on lake nutrient cycles. However, 

little is known of quantitative estimates of CNR. Nonetheless, these independent 

lines of research show that variation in CNR is regulated by the interactions 

between consumers in the lake. Understanding trophic interactions (i.e., food web 

dynamics) within a food web may improve the integration of CNR into lake nutrient 

dynamics.  

2.5  Synthesising food web ecology macro-scale patterns in lakes 

Food web research is a diverse field but two areas emerge where there has been 

rapid development. These are, firstly, general scaling relationships for biomass, 

body size and metabolism, and second, patterns in the structure of trophic 

interactions.  Concepts adapted from these two research themes have been 

important in developing understanding of food web structural and functional traits 

(Layman et al. 2015).  

2.5.1 Trophic level, biomass and body size scaling relationships 

Developing general scaling relationships in food web ecology has been assisted by 

access to multiple food web datasets from around the world (Cohen et al. 2003; 

Hatton et al. 2015; Cebrian 2015). The resulting relationships have reinforced 

Kleiber’s law that metabolism scales to the -3/4 power of body size (Brown 2004). 
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Given that excretion rates, in particular those of nitrogen (Houlihan 1991), are 

primarily driven by metabolism, these relationships can be used to infer nutrient 

excretion rates from body size. As such, Hall et al. (2007) demonstrated that N 

excretion rates approximated a -3/4 power relationship with body size based on a 

diverse range of freshwater taxa. Given that higher trophic level consumers are 

typically larger bodied, mass-specific metabolism would logically decrease with 

trophic level.  

Biomass of predators and their prey typically scale in a universal manner (McCann 

et al. 2005). This was recently formalised by showing that predator biomass scales 

to a -3/4 power of prey biomass across a diverse range of ecosystems (Hatton et al. 

2015). The value of the exponent (K), however, varies amongst major ecosystem 

types.  When expressed in log-log terms, the ratio of predator to prey biomass for 

lake food webs was on average 0.68 (Hatton et al. 2015). A large biomass of 

predators relative to prey is indicative of strong top-down control within a food web 

(Vadeboncoeur et al. 2005; Casini et al. 2009; DeLong et al. 2015). Through time, 

K can vary as a response to cycles in predator-prey dynamics and associated 

biomass oscillations (Barraquand et al. 2017). Food webs that tend to demonstrate 

higher average K values (e.g., for pelagic planktivores) are assumed to have high 

productivity, despite relatively low producer biomass, and are often vulnerable to 

perturbations (Vadeboncoeur et al. 2005; Casini et al. 2009).  

Body size also scales predictably between predators and prey (McCann et al. 2005; 

Brose et al. 2006). Averaged across a range of ecosystems, the exponent (M) for 

this relationship is 1.16 and not significantly different between major ecosystems 

(i.e., freshwater marine and terrestrial). The exponent varies between invertebrates 

and vertebrate ectotherms (fish) predators, however, with average values of 4.15 

and 0.96 for fish and invertebrates, respectively (Brose et al. 2006). Predator-prey 

body-size ratios have an important role in structuring food webs and ratios have 

consistently increased over the last 500 x 106 years (Klompmaker et al. 2017). 

Greater predator-prey body size ratios are associated with a greater number of prey 

species in a predator’s diet (Petchey et al. 2008). This results in lower trophic 

efficiency and greater potential for top-down control in food webs (Barnes et al. 

2010). 
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2.5.2 Universal patterns of trophic structure 

The structure of trophic interactions, or food web architecture, has been studied 

mostly in the context of understanding mechanisms that promote stability of 

ecological communities. Understanding of these mechanisms has been supported 

by numerical modelling (McCann et al. 1998; Post et al. 2000), experimental studies 

(Steiner et al. 2006; Li and Stevens 2010) and empirical observations (Rooney et al. 

2006; McMeans et al. 2016; Stewart et al. 2017) of lake food webs. The traditional 

view of pelagic and littoral food webs as being largely independent, with energy 

transferred within each food chain but with little interaction between the two, has 

now been superseded by recognition that lake consumers feed on both pelagic and 

littoral resources (Polis et al. 1997; Vadeboncoeur et al. 2002; Schindler and 

Scheuerell 2002; Rooney and McCann 2012; McMeans et al. 2015). This basis for 

this change is embedded in observations that many food webs have weak trophic 

interactions, with strong trophic interactions rarely observed (McCann 1998). Weak 

trophic interactions act to stabilise food webs because a consumer that feeds on 

multiple resources is less exposed to fluctuations in one of their food resources than 

a consumer reliant on fewer resources (McCann et al 2000). Intermediate levels of 

prey preference (i.e., neither completely random selection of prey nor exclusive 

reliance on a single resource) optimise food web stability (Post et al. 2000). Large 

fluctuations in primary producer biomass are therefore dampened when a top 

predator consumes organisms from multiple trophic channels (Post et al. 2000; 

Vadeboncoeur et al. 2005; Blanchard et al. 2010; Ward et al. 2015). Recently, 

theory from network science has been integrated into food web ecology (Proulx et 

al. 2005; Stouffer and Bascompte 2011). Two general patterns of food web structure 

that have arisen from network science integration are asymmetric nested (i.e. ‘A-

frame’ shaped distribution of interaction) food webs and compartmentalisation 

within food webs. 

Asymmetric or nested food web structure occurs when higher trophic level 

consumers have multiple weak trophic interactions with prey resources, while lower 

trophic level consumers have strong trophic interactions but fewer food resources 

(Rooney et al. 2006). Nested structures are the result of several organismal 

functional traits related to the trophic level.  Species and functional diversity 

correlate negatively with trophic level (Cohen et al. 2003), and organisms from 

lower trophic levels are commonly small and fast growing (Cohen et al. 2003; 

Beinser et al. 2006). These attributes of lower trophic levels favour trophic 
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specialisation on basal resources which commonly have patchy distributions in 

space and time (Rooney et al. 2006; Neutel et al. 2008). Conversely, top predators 

are typically slow growing and long lived (McCann et al. 2005), requiring a more 

diverse diet to insure them against fluctuations in prey abundance (McMeans et al. 

2016; Stewart et al. 2017). The large number of prey species of top predators 

explains why they can have disproportionately strong effects on food web dynamics 

despite low biomass (Estes et al. 2011).   

A food web compartment is defined as a subset of species that can be identified as 

having stronger trophic interactions amongst one another than other constituents of 

the food web. Multiple food web compartments will typically be connected through 

a few weak interactions (Thébault and Fontaine 2010; Stouffer and Bascompte 

2011). It is argued that compartmentalisation promotes food web stability, because 

perturbations are more likely to be contained within an individual compartment, 

rather than being propagated throughout the entire food web (Krause et al. 2003; 

Stouffer and Bascompte 2010; Thébault and Fontaine 2010; Stouffer and 

Bascompte 2011). The relative importance of compartmentalisation increases with 

the number of species in a food web (Stouffer and Bascompte 2011).  

The food web patterns discussed here, biomass and body size food web scaling 

relationships, as well as nested structure and compartmentalisation within food 

webs, are well documented in lake food webs. Biomass relationships amongst 

trophic levels have been widely studied (Carpenter and Cohen 2003) and lake food 

webs are known to be highly size structured (McCann et al. 2005; Romanuk et al. 

2011; McMeans et al. 2016). Lake food webs are commonly compartmentalised 

into littoral and pelagic consumer groups (Rooney et al. 2006; Thébault and 

Fontaine 2010; Stouffer and Bascompte 2011; McMeans et al. 2016). The degree 

to which consumers link littoral and pelagic compartments (i.e., the evenness of 

their littoral-pelagic diet contributions) is positively related to trophic level 

(Schindler and Scheuerell 2002; Vander Zanden and Vadeboncoeur 2002; 

Vadeboncoeur et al. 2011; Rooney et al. 2006). Taken together, these food web 

patterns regulate patterns of consumer biomass within lakes in space and time. They 

dictate the degree to which consumers will link pelagic and littoral nutrient cycles 

as well as temporal patterns of biomass between trophic levels. Lake food webs, 

particularly pelagic food webs, are typically characterised by relatively large and 

abundant top predators (high M and K respectively). This lends pelagic food webs 
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to exhibiting oscillations in consumer biomass across trophic levels (Barraquand et 

al. 2017), a phenomenon that is regulated by the extent of littoral habitat coupling. 

Given that consumer biomass is a significant factor determining CNR rates, this 

suggests that food web dynamics, and changes therein, will have the greatest effect 

on controlling CNR rates.  

2.6 Applying food web theory to understand consumer nutrient 

recycling  

Biomass and body size food web scaling relationships demonstrate how biomass 

becomes progressively smaller with increasing trophic level while body size 

becomes larger (Figure 2-2). The distributions of biomass and body size predicted 

from these scaling relationships can inform patterns of CNR (Wang and Brose 

2017). Using the example of nitrogen cycling, where all nitrogen pools are 

expressed as a percentage of primary producer biomass-N, annual CNR rates should 

vary between > 100% for first trophic level herbivores to < 0.001% for tertiary level 

top-predators (Figure 2-2). Food web structural patterns predict that higher trophic 

level consumers will have a greater diet breadth, foraging over a wider spatial area; 

a mechanism that will link habitats within an ecosystem (Figure 2-2). Thus, CNR 

from higher trophic level consumers is expected to disperse nutrients over a greater 

area, transporting them between littoral and pelagic areas and invoking more 

source-sink dynamics (Figure 2-2). Conversely, lower trophic level consumers will 

primarily recycle nutrients in situ, reflecting their spatially restricted diet and more 

localised distributions (McCann et al. 2005; Beisner et al. 2006; McMeans et al. 

2014; Stewart et al. 2017). Food web knowledge also suggests that CNR will 

demonstrate unique spatial and temporal patterns as well as a higher prevalence of 

feedback effects when compared with hydrodynamic and biogeochemical processes.   

2.6.1 Spatial patterns 

The spatial pattern of CNR fluxes differs from nutrient fluxes related to 

hydrodynamics and microbial biogeochemistry. The distribution of CNR within a 

lake follows nested food web structure (Figure 2-2). A nested distribution of CNR 

rates in space enables self-organisation (i.e., regulating feed-back loops) of lake 

biogeochemical cycles, where local processes cause emergent macro-scale patterns 

(Levin 1999; Dong et al. 2017; Farnsworth et al. 2017).  Self-organisation of 

nutrient cycles had the second-largest effect in determining spatial patterns, after 

catchment geomorphology, in a perennial desert stream (Dong et al. 2017). Self-
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organisation processes have strong feedback loops and, by virtue of these, offer a 

degree of resilience to perturbation (Levin 1999; Scheffer and Carpenter 2003; 

Farnsworth et al. 2017).  

 

Figure 2-2: Conceptualised structure of (a) the food web and (b) consumer nutrient recycling (CNR) in a lake 

ecosystem with pelagic and littoral habitat and three trophic levels (TL1 to TL3).  Arrow width in (a) represents 

proportional mass flux from resource to consumer group, co-varying trophic level and foraging range are 

represented by colour bands.  

2.6.2 Temporal patterns 

The temporal patterns of CNR fluxes are also expected to differ from those driven 

by hydrodynamic and microbial biogeochemical processes. CNR dampens 

temporal variability of nutrient cycling rates in lakes (Vanni et al. 2013). Expected 
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temporal patterns of the three processes are compared over the seasonal cycle of a 

monomictic lake (Figure 2-3). Physical mixing delivers nutrients in abrupt pulses, 

which are then retained within the system through microbial recycling (Lewis 2010). 

Larger organisms respond less rapidly to pulses than microbes, and retain a smaller 

fraction of the initial pulse, but persist for longer after an initial pulse (Cohen et al. 

2003). Hence, periods when CNR contributions to plant-available nutrient pools are 

greatest likely coincide with greater biomass of higher trophic level than lower 

trophic level organisms (i.e., M < 1) (Figure 2-3). Such periods likely occur 

seasonally within many lakes (McMeans et al. 2015). When primary producer 

biomass is relatively low, CNR inputs should be high (Figure 2-3). Furthermore, 

CNR is more likely to act as a nutrient source to low primary producer areas within 

the lake as higher trophic level consumers have a greater diet breadth.  

2.6.3 Feedback effects   

CNR processes are likely to be susceptible to longer-term feedback effects 

corresponding to inter-annual population cycles of higher trophic level consumers. 

This trait distinguishes CNR from physical hydrodynamic and microbial 

biogeochemical processes. Consumer population cycles are prone to intrinsic (e.g., 

predator-prey interactions) and external (e.g., environmental periodicity) drivers 

(Barraquand et al. 2017) over multi-year time scales. These fluctuations could 

introduce substantial variation in CNR rates that are out of phase with physical 

hydrodynamics and microbial biogeochemical processes, and which are far more 

responsive to intra-annual variance (Lewis 2010; Sommer et al. 2012). These ‘out 

of phase’ responses suggest that variation in CNR induced by population cycles 

will likely dampen rather than accentuate anomalous annual patterns in physical 

hydrodynamics and microbial biogeochemical processes. The converse of this ‘out 

of phase’ response is that CNR may make lakes resilient to restoration actions such 

as oligotrophication (Søndergaard et al. 2007).  
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Figure 2-3: Conceptualised seasonal patterns in nutrient fluxes produced from hydrodynamic, biogeochemical 

and consumer nutrient recycling (CNR) processes for a hypothetical temperate monomictic lake.  

 

2.6.4 Responses of consumer nutrient recycling to global environmental change 

CNR processes are expected to be more sensitive to indirect drivers of climate 

change, in contrast to the strong direct effects observed for physical hydrodynamic 

and microbial biogeochemical processes. The most significant impacts on CNR 

rates are from stressors that alter structural characteristics of aquatic food webs such 

as body size – biomass distribution and trophic interactions (Carpenter et al. 1992). 

Although direct effects of climate warming are likely less consequential for CNR, 

there are many studies describing effects of warming on food web structure. The 

effects of warming on food web structure have received substantial research 

attention and inform inferences on CNR responses. Habitat warming increases 

consumer metabolic rates that can lead to reduced consumer body size (Horne et al. 

2015; Sentis et al. 2017) and changes in biomass between trophic levels (Lang et al. 

2017). Lower trophic level, smaller bodied consumers show greater body size 

reductions with increased temperature than higher trophic levels (Garzke et al. 

2015); hence, warmer temperatures are expected to reduce carnivore biomass but 

increase herbivore biomass (Lang et al. 2017). This suggests that, with warming, 

CNR contributions from lower trophic levels will increase and higher trophic level 
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contributions will decrease. This would be expected to result in stronger localised 

CNR effects and less spatial coupling.  

Global environmental change drivers other than climate warming have stronger 

impacts of food web structure and should be the basis of targeted management. 

Species invasions and extinctions directly alter food web structure. Species invasion 

case studies have invariably demonstrated stronger effects on ecosystem nutrient 

cycling than other drivers (Schindler et al. 1993; Walsh et al. 2016). Warmer 

temperatures will change the geographic ranges of many species leading to 

expected higher rates of species invasion and extinctions (Rolls et al. 2017). 

Eutrophication also has the ability to indirectly impact CNR by creating physical 

conditions more conducive to novel species and changes in lake communities 

(Ludsin et al. 2001). Over-fishing of top predators truncates food web biomass 

distribution (i.e., lower trophic transfer efficiency) and reduced consumer mean 

body size (due to fewer large predators) (Jennings and Blanchard 2004) and in itself 

can have significant impacts on CNR. Impacts from species invasions and over-

fishing represent the best avenues for management aiming to conserve CNR 

processes in the face of global environmental change.   

Strong climate induced changes on hydrodynamic and biogeochemical processes 

may affect the relative role of CNR. Warmer temperatures increase the significance 

of microbial biogeochemical processes (Moss et al. 2010; Garzke et al. 2015) and 

decrease the significance of physical hydrodynamic processes (Lewis et al. 2010) 

relative CNR nutrient fluxes. During periods when nutrient fluxes from 

hydrodynamic and microbial biogeochemical processes are both reduced (e.g., 

prolonged stratification; O’Reilly et al. 2003; Verburg et al. 2003; Moss 2010), 

CNR fluxes will become increasingly important for sustaining pelagic productivity. 

By virtue of facilitating food web structures that promote resilience to perturbations, 

CNR is expected to display a degree of resilience to global environmental change 

stressors (Levin 2005; Dong et al. 2017). However, recent research indicates that 

CNR responses may vary in the face of multiple stressors; impacts from warming 

should be greater when nutrient concentrations are lowest (Sentis et al. 2017). Such 

conditions are also when ecosystem effects of CNR are also greatest (Carpenter et 

al. 1992; Moss et al. 2010). The duration of stratification for most lakes is predicted 

to increase under climate warming projections (Adrian et al. 2010; Kraemer et al. 

2015). Hence active management of CNR will become increasingly important. 
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Effective management of CNR is compatible with most contemporary lake 

management frameworks (e.g., limiting catchment nutrient loads, sustaining 

fisheries and preventing species invasions). Explicitly accounting for CNR has the 

potential to improve lake management in the face of larger scale global change 

effects.  

2.6.5 Future research directions.  

The scarcity of data quantifying responses of CNR to a range of stressors represents 

a substantial research gap. Field studies, experimental work and modelling need to 

be fully integrated and their interdependencies acknowledged (Fussmann 2008; 

Sommer et al. 2012). Field and experimental studies will both inform modelling 

studies (e.g., providing parameterisation data) and in turn be informed by modelling 

(as a tool for rapid generation and exploration of hypotheses) (Fussmann 2008). 

The quantitative macro-scale patterns of food web structure demonstrated in this 

review provide a starting point for pursuing future modelling, experimental and 

field studies. Arguably, field studies will provide the ultimate validation for CNR 

processes but also are the most challenging data of these approaches. CNR field 

studies have so far been limited due to the scale of the work required (see: Schindler 

et al. 1993; Attydae and Hansson 2001; Vanni et al. 2006; Sereda et al. 2008). Stable 

isotope studies hold particular promise as a field-based approach for understanding 

consumer nitrogen cycling processes. Stable isotopes are widely used for 

quantifying fluxes of nitrogen between compartments and processes in ecosystem 

studies (Robinson 2001; Middelburg 2014). Nitrogen and carbon stable isotopes are 

well established in food web ecology for quantifying food web structure and 

biomass fluxes (Middelburg 2014). Lake food web studies commonly use stable 

isotope analyses to quantify littoral and pelagic diet contributions (Vander Zanden 

and Vadeboncoeur 2002, McMeans et al. 2016). Consumer δ15N values indicate 

trophic level as δ15N values are consistently enriched ~3 ‰ relative to their diet 

(Minagawa and Wada 1984; Vander Zanden and Rasmussen 2001).  The converse 

of nitrogen trophic enrichment is that consumer excretion δ15N is concomitantly ~3‰ 

deplete relative to their diet (Minagawa and Wada 1984; Somes et al. 2010). Hence, 

15N depletion of DIN pools could be used as a measure of the contribution of CNR.  

Analytical techniques provide δ15N values of specific DIN compounds, nitrate, 

nitrite and ammonium, to be differentiated, enabling high resolution of N cycling 

dynamics (Bartrons et al. 2010). δ15N-NH4
+ values are of particular interest as 
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ammonium is  the primary N excretory product of aquatic consumers (Vanni et al. 

2013). Such measurements can now be obtained from oligotrophic lakes where 

CNR effects are expected to be greatest, as technical advances enable δ15N values 

of nitrate and particularly ammonium at low concentrations (e.g., < 2 mg m-3) to be 

determined (Xue et al. 2009; Bartrons et al. 2010). Ammonium in oligotrophic lakes 

is typically at low concentrations and readily removed by phytoplankton or 

nitrification (Kumar et al. 2008). Hence, it is expected that δ15N-NH4
+ values 

primarily reflect localised sources (e.g., excretion). Expected δ15N values of CNR 

can be demonstrated through applying the same framework as above for exploring 

CNR effects across trophic levels (Figures 3-2 and 3-3). Assuming that DIN inputs 

for the lake are 1 ‰ and there is a 3 ‰ trophic fractionation effect per trophic level 

within a closed system, net CNR is expected to result in excreted ammonium 

ranging from -1 to 0‰. The more negative δ15N values are associated with 

relatively greater biomass at lower trophic levels (i.e., lower trophic level biomass 

scaling factor - K) and the more positive ones with relatively greater biomass of 

higher trophic levels (higher K). In this example, the closed system assumption 

tightly constrains the effect of CNR on δ15N-NH4
+ values. Fractionation effects are 

open-system dynamics control mass transfers (Middleburg 2014). When CNR is 

the primary factor controlling source-sink dynamics between habitats within a lake 

(an open system), with all metabolic and trophic structure assumptions kept 

constant, δ15N-NH4
+ values can vary substantially (> 40‰) over the scale of days. 

This is because predation, as an N vector, is preferentially removing organic 

material with high δ15N values, resulting in localised δ15NH4
+ depletion. Viewed at 

the ecosystem level, CNR resulting from such source-sink dynamics would be 

expected to result in high spatial and temporal variability in δ15NH4
+ values. In 

contrast, δ15NH4
+ values resulting from biogeochemical and hydrodynamic 

processes should be relatively consistent (Sommes et al. 2010). Compound-specific 

amino-acid δ15N analyses are an emerging technique that enables isotopic effect 

within consumers associated with baseline variation to be separated from trophic 

fractionation effects (Chikaraishi et al. 2009; Steffan et al. 2013). Such analyses, 

when integrated into field studies, will enable isotopic evidence of nutrient cycling 

processes to be integrated with food web dynamics. Through stable isotope field 

studies, relationships between food web structure and CNR could be compared 

amongst lakes over gradients such as length of stratified season, nutrient enrichment, 

predator-prey biomass ratios, and degree of pelagic-littoral coupling. The 
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quantitative patterns of biomass, body-size, metabolic rate and trophic interactions, 

which all scale with trophic level, provide a framework for developing estimates of 

CNR and how it affects food web structure. Ultimately, these approaches may 

identify critical areas or processes in space and time for targeted management of 

CNR. 

2.7 Conclusions  

CNR is an important process within lake nutrient cycles. It is distinct from 

hydrodynamic and microbial biogeochemical nutrient cycling processes, both in 

terms of spatial and temporal distributions, and it may offer some resilience to 

global environmental change. While hydrodynamic and microbial biogeochemical 

nutrient cycling processes have rightfully received significant research attention, 

understanding how lakes might respond to global environmental change will 

require a greater focus on mobile CNR processes. An improved mechanistic 

understanding is possible by integrating food web theory and will provide greater 

context to the current case studies such as those discussed here. Specifically, we 

suggest that stable isotope based field studies provide a promising research avenue 

moving forward. As demonstrated here, even broad insights from food web research 

can substantially inform understanding of CNR processes and demonstrate their 

sensitivity to food web alteration. The research synthesised in this review should 

provide impetus and direction for integrating food web ecology into lake nutrient 

cycling research, ultimately benefiting lake management.   
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3. Chapter three 

Variable littoral-pelagic coupling as a food-

web response to seasonal changes in pelagic 

primary production 

This chapter is published as: Stewart S. D., Hamilton D. P., Baisden W. T., Dedual 

M., Verburg P., Duggan I. C., Hicks B. J., Graham B. S. 2017. Variable littoral-

pelagic coupling as a food-web response to seasonal changes in pelagic primary 

production. Freshwater Biology 62: 2008–2025 (DOI: 10.1111/fwb.13046). 

3.1 Abstract 

1. Lakes are among the most seasonally forced ecosystems on Earth. Seasonal 

variation in temperature and light produce cyclic patterns in water column mixing, 

nutrient supply and phytoplankton biomass. Diet responses of consumers to these 

patterns have rarely been quantified. Moreover, pelagic-littoral coupling of dietary 

resources by mobile consumers is commonly considered to be static over annual 

cycles.  

2. This study quantifies littoral-pelagic diet responses of multiple consumers to a 

strong shift in pelagic phytoplankton abundance over an annual cycle (September 

2014 – August 2015) in a large (area 616 km2), oligotrophic, monomictic lake (Lake 

Taupō, New Zealand). Intra-annual patterns in pelagic phytoplankton (chlorophyll 

a) and zooplankton were determined over multiple years. Major resource and 

consumer δ13C and δ15N were then collected over an annual cycle. Temporal 

patterns in in food web structure were examined using convex-hulls as a proxy of 

community trophic niche size. Diet was quantified using mixing models for 

zooplankton, meso-predatory zooplanktivorous common smelt (Retropinna 

retropinna) and benthivorous common bullies (Gobiomorphus cotidianus), as well 

as the top-predator rainbow trout (Oncorhynchus mykiss). Trophic structure 

patterns for smelt, bullies and trout where then independently examined using 

compound specific amino-acid δ15N analyses (CSIA-AA). 

3. Lake Taupō demonstrated similar food web patterns to other lakes globally. 

Phytoplankton and zooplankton demonstrated strong seasonal oscillations of 

abundance driven by both bottom-up (nutrient supply) and top-down (stable limit 
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cycle) drivers. The food web demonstrated the typical nested structure. It responded 

to seasonally low and high pelagic resource availability periods by expansion and 

contraction, respectively, of trophic niche space. In response to lower pelagic 

phytoplankton abundance during summer stratification, and phytoplankton 

accumulation at a deep chlorophyll maximum (DCM), zooplankton abundance 

reduced and their diet became dominated by phytoplankton from below the 

thermocline (i.e., the hypolimnion and DCM). This change may have been 

prompted by the combined drivers of avoidance of predation and depauperate food 

supply in surface-waters.  

4. The diet of smelt and bullies switched from predominantly zooplankton to 

benthic macroinvertebrates, synchronous with the decline in pelagic zooplankton. 

Trout diet, inferred from comparison of isotopic signatures of tissues with different 

turnover rates, also increased littoral resource reliance over the stratified period. 

Smelt, bully and trout CSIA-AA data confirmed estimates of trophic position and 

indicated a greater degree of trophic complexity in the littoral than the pelagic food 

chain.  

5. Food webs in large, deep lakes such as Taupō are expected to be primarily pelagic. 

This study demonstrates the need to re-examine this expectation due to seasonal 

variations in productivity. The relatively small littoral areas in large lakes, 

combined with meso-predators’ highly seasonally variable littoral resource use, 

may drive strong seasonal top-down effects on littoral macroinvertebrate prey. Our 

study supports the notion that food web interactions are highly dynamic and 

responsive to seasonal forcing. By linking food web dynamics to dynamic 

environmental conditions, this study provides a framework for future studies 

research on understanding lake food web responses to a range of annual/seasonal 

and global environmental change drivers. 

3.2 Introduction 

Lakes are characterised by strong seasonal gradients (Lewis, 1983; Adrian et al., 

2010). Physical forcing by seasonal changes in temperature and light determines 

water column mixing, nutrient cycling and ultimately primary production within 

pelagic waters (Kilham & Kilham, 1990; Moss, 2012). Seasonal variations are 

reinforced by high variability of pelagic primary producer biomass compared with 

that of littoral producers (Vadeboncoeur et al., 2003; Kraemer et al., 2015). 

Therefore, seasonal effects are greater in large lakes which typically have higher 
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ratios of pelagic: littoral surface area and primary production than small lakes. 

While the responses of lake physical processes and biogeochemical cycles to 

seasonal climatic forcing have been extensively studied (Sommer et al., 2012), 

much less is known about the responses of food webs (McMeans et al., 2015). The 

significance of this knowledge gap relates to the global importance of fisheries in 

large lakes. Consumers with lifespans greater than one year (i.e., large, higher 

trophic level predators) typically do not exhibit seasonal biomass changes 

concomitant with fluctuations in food resources, suggesting that diet-switching to 

alternative resources is important for maintaining this biomass (McMeans et al., 

2015). Integrating food web theory into lake seasonal dynamics presents a 

promising avenue to better understand the connection of food resources to 

consumer production.  

Strong physical forcing means that lakes are particularly vulnerable to external 

drivers such as climate change and nutrient enrichment. Climate warming is 

expected to prolong thermal stratification in many lakes, impacting primary 

production (Adrian et al., 2010; O’Reilly et al., 2015). In clear, oligotrophic lakes, 

prolonged stratification is expected to reduce primary production as nutrients are 

retained below the trophogenic zone (O’Reilly et al., 2003; Verburg et al., 2003). 

Conversely, in eutrophic lakes with strong light limitation, increased stratification 

is expected to increase primary production (Paerl & Huisman, 2008).  

A review by McMeans and others (2015) applied food web theory to explore 

impacts of seasonal gradients and resource availability on lake consumers. The 

authors argued that, in the same way in which large mobile predators stabilise food 

webs by linking spatially distinct food webs through consumption, large long-lived 

predators dampen pulses in prey resources. Mobile consumers play a critical role in 

linking distinct trophic pathways, and this functional trait promotes food web 

resilience (McCann et al., 2005; McMeans et al., 2016). Large-bodied, higher 

trophic level predators have a larger number of trophic linkages (Rooney & 

McCann, 2012) and show less dietary specialisation than lower trophic level 

consumers (Rooney et al., 2006; McMeans et al., 2016). This nested food web 

structure is particularly well documented in lakes where fish act to link littoral and 

pelagic food chains (Schindler & Scheuerell, 2002; Vadeboncoeur et al., 2002; 

Vander Zanden & Vadeboncoeur, 2002).  
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An increasing number of studies in a diverse range of aquatic systems have 

demonstrated food web responses to seasonal changes in productivity (see: Hayden 

et al., 2014; Dalu et al., 2017; Muzumder et al.,  2017; Peralta-Maraver et al. 2017). 

In smaller lakes, dietary shifts of predators to littoral and terrestrial resources have 

been observed when pelagic productivity declines (Eloraanta et al., 2015; Dalu et 

al., 2017; Peralta-Maraver et al., 2017). However, similar observations are lacking 

in large lakes which have a relatively high proportion of pelagic: littoral habitat 

with strong seasonal variations in primary production (Vadeboncoeur et al., 2008), 

are lacking. Eutrophication (Carpenter et al., 2011; Moss et al., 2012) and 

prolonged stratification (Verburg et al., 2003; Adrian et al., 2010) as a result of 

global environmental change are expected to substantially impact pelagic 

productivity. Theoretical arguments suggest that small-bodied consumers with 

short generation times (i.e., zooplankton) will rapidly adjust their biomass to the 

availability of resources (i.e., primary producers) and may potentially undergo 

diapause during resource depletion (Sommer et al., 2012). In contrast, large mobile 

top predators respond to seasonal variations in pelagic and littoral productivity by 

switching their diet to alternate (littoral) resources (Hecky & Hesslein, 1995; 

Vander Zanden & Vadeboncoeur, 2002; Hayden et al., 2014). Investigations of 

littoral-pelagic coupling have been enhanced greatly through the use of stable 

isotopes (Middelburg 2014; McMeans et al. 2016). 

Food web structure is commonly quantified using δ15N and δ13C stable isotopic 

signatures of known consumers and resources within the food web. Signatures of 

δ15N provide a reference for the trophic level of an organism and δ13C values are 

used to distinguish littoral and pelagic energy channels. Benthic littoral algae 

typically have δ13C values 10 – 15 ‰ higher than pelagic phytoplankton (Hecky & 

Hesslein, 1995). When depicted in δ15N and δ13C isotopic bi-space, lake food webs 

with a nested structure show a characteristic “A-frame” shape; consumers at lower 

trophic levels (i.e., with lower δ15N values) have δ13C values indicative of strong 

reliance on a single (i.e., either littoral or pelagic) resource and top predators have 

δ13C signatures intermediate between littoral and pelagic food chains (i.e., 

indicative of strong coupling of these food chains) (McMeans et al., 2016). 

Repeated measures of consumers through time can then be used to demonstrate 

resource switching by consumers over annual cycles (O’Reilly et al., 2002). For 

large, long-lived top-predators that are inherently less abundant, and potentially rare, 

temporal changes in diet can be assessed by comparing tissues which have different 
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turnover rates (Vander Zanden et al., 2015; Bond et al., 2016). Several analytical 

tools are now available for determining aspects of food web structure using stable 

isotopes. Bayesian mixing models quantify consumer diet composition (Moore & 

Semmens, 2008; Semmens et al., 2009; Layman et al., 2012) while the range in 

consumer stable isotope values is used to indicate trophic niche size (Jackson et al., 

2011; Layman et al., 2012). Trophic niche estimations of whole communities (e.g., 

using convex hull area) provide relative comparisons of the range of range of 

resources supporting food webs (Layman et al., 2012). When integrated, these 

analytical tools enable specific (diet composition) and general (niche space) 

determination of lake food web responses to seasonal cycles. Recent analytical 

advancements, such as compound-specific amino-acid δ15N analyses (CSIA-AA) 

provide precise alternative techniques for assessing key attributes of trophic 

structure such as trophic position (Bowes & Thorpe, 2015) and  trophic diversity 

(Steffan et al., 2015). These techniques can provide independent validation to 

inferences derived from conventional ‘bulk’ δ15N and δ13C analyses and can reveal 

‘cryptic’ trophic interactions otherwise not identified by bulk isotope analyses 

(Steffan et al., 2015). 

In this study we demonstrate changes in food web consumer dietary responses to a 

strong seasonal gradient in pelagic productivity in Lake Taupō, New Zealand. This 

lake exemplifies other large, deep, oligotrophic lakes across the globe which may 

be subject to greater duration of stratification with climate change, with potential 

major implications for pelagic vs. littoral food resources and higher trophic levels 

including lake fisheries (O’Reilly et al., 2003; Adrian et al., 2010). Lake Taupō is 

the largest permanent lake in Oceania and supports an important rainbow trout 

(Oncorhynchus mykiss, family Salmonidae) fishery. Temporal patterns in producer 

and consumer dynamics were determined by repeat sampling across spatially 

distinct littoral and pelagic sites over the course of an annual cycle. First, we used 

an inter-annual time series of monthly pelagic chlorophyll a and zooplankton to 

examine seasonal biomass patterns. Second, seasonal variations in pelagic-littoral 

coupling and food web size (i.e. trophic niche) were quantified using δ13C and δ15N 

analyses. Compound-specific amino acid δ15N analyses provided validation of 

broad food web structure inferred from mixing model analyses. We hypothesised 

that the strong seasonal gradient in pelagic phytoplankton abundance: i) will reflect 

changes in the food web trophic niche size, and ii) a higher degree of littoral-pelagic 

diet switching to compensate for resource variability. Implications of these findings 
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are discussed in the context of contemporary food web theory and understanding of 

lake food web responses to global environmental change.  

 

3.3 Methods 

3.3.1 Study site 

Lake Taupō is an oligotrophic, warm monomictic lake within a rhyolitic caldera 

which was last active around 232 AD (Hogg et al., 2011). The lake is characterised 

by a single basin (mean depth = 90 m) and relatively narrow littoral habitat, 

particularly in the western area where plunging cliffs constitute much of the 

shoreline (Figure 3-1). The Waikato River drains to the north and is the sole surface 

discharge. The mean Secchi depth has been stable at around 15 m over the last 

decade and commonly exceeds 18 m during summer stratification (Verburg & 

Albert, 2016). As a result of a combination of mild winters, high water clarity and 

seasonally elevated surface-water nutrient concentrations, Lake Taupō has a winter 

phytoplankton productivity maximum that is dominated by diatoms (Vincent, 1983). 

The summer phytoplankton assemblage is characterised by a deep chlorophyll 

maximum (DCM) with a similar diatom community to that observed during winter 

(Hamilton et al., 2010). Colony-forming cyanobacteria (Dolichospermum sp., 

family Nostocaceae) and chlorophytes (Botryococcus sp., family Botryococcaceae) 

occur frequently in the surface-waters during summer stratification. Littoral 

primary production is dominated by benthic diatomaceous mats to 40 m depth. Non-

native macrophyte beds are present sporadically around 5-18 m depth (Howard-

Williams & Davies, 1988; Hawes & Smith, 1994). Strong seasonal patterns in 

pelagic phytoplankton abundance and seasonally stable littoral producer abundance 

results in seasonal variability in the littoral-pelagic production ratio (Table 3-1). 
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Figure 3-1 Bathymetric map of Lake Taupō showing the three pelagic sampling sites (crossed circles) and six 

littoral sampling sites (triangles) used in this study.  

 

Native fauna recorded in Lake Taupō include benthivorous common bully 

(Gobiomorphus cotidianus, family Eleotridae), which occupy the littoral zone as 

adults, benthic invertebrates consisting of snails (Potamopyrgus antipodarum, 

family Tateidae), oligochaete worms and chironomids (e.g., Chironomus 

zealandicus, family Chironomidae), freshwater mussel/kākahi (Echyridella 

menziesii, family Unionidae) and freshwater crayfish/kōura (Paranephrops 

planifrons, family Parastacidae) (Forsyth & McCallum, 1981; Rowe et al., 2002). 

The earliest zooplankton records indicate a community dominated by Crustacea, in 

particular the calanoid copepod Boeckella propinqua (family Centropagidae) and 

the cladocerans Ceriodaphnia dubia (family Daphniidae) and Bosmina 

meridionalis (family Bosminidae) (Jolly, 1965; Forsyth & McCallum, 1980). A 

land-locked population of the galaxiid kōaro (Galaxias brevipinnis, family 

Galaxiidae) existed historically within the lake in great abundance but is now 

largely limited to the tributaries isolated from predatory trout (Rowe, 1993). Eels 

(Anguilla spp., family Anguillidae) are historically absent due to natural and 

artificial migratory barriers. However, there have been either deliberate or 
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accidental releases of eels in recent years. These populations are not expected to be 

self-sustaining populations due to migratory barriers. 

Table 3-1: Mean summer stratified and winter mixed Values of physical and chemical parameters (± standard 

deviation) for Lake Taupō, 2004-2014 (WRC 2015).  

Parameter Summer Stratification Winter mixing 

Mean stratification duration 288 ± 21 days 

Areal percent littoral habitat* 9.7 %  
Temperature 19.4 ± 1.0 °C 11.4 ± 1.2 °C 

Secchi 17.6 ± 3.1 m 13.8 ± 2.1 m 

TP 4.6 ± 1.8 mg m-3   6.2 ± 2.0 mg m-3   

TN 84.5 ± 26.6 mg m-3    81.3 ± 22.0 mg m-3   

Chlorophyll a 0.5 ± 0.2 mg m-3   1.7 ± 0.5 mg m-3   

Littoral primary producer biomass 
as percent of lake gross** 

16.2 ± 1.5% 1.8 ± 0.7% 

 

A number of exotic fauna have been deliberately or unintentionally introduced. 

Brown trout (Salmo trutta, family Salmonidae) and rainbow trout (Oncorhynchus 

mykiss) were introduced in the late 19th century to establish a sport fishery.  

Planktivorous shoaling common smelt (Retropinna retropinna, family 

Retropinnidae) were introduced into Taupō from nearby Lake Tarawera in 1936, as 

a fodder fish for the trout (Ward et al., 2005). Brown Bullhead catfish (Ameiurus 

nebulosus, family Ictaluridae) were either illegally or accidentally introduced to the 

lake in the early 1980s and the North American cladoceran Daphnia galeata (family 

Daphniidae) was identified in the lake in the early 2000s (Duggan et al., 2006).  

3.3.2 Sample collection  

Seasonal pelagic primary production patterns – Seasonal patterns of variables in 

the pelagic zone of Lake Taupō were determined routine sampling at Site A (Figure 

3-1). Chlorophyll a (Chl-a) and zooplankton abundance were assessed from 

samples collected at Site A by the regional environmental monitoring authority, 

Waikato Regional Council, from January 2000 to January 2009. Typically, 16 

paired Chl-a and zooplankton samples were available annually. Chl-a samples were 

collected from the surface-water using a 2-m integrated tube and analysed by NIWA 

(Hamilton, New Zealand) using acetone pigment extraction and 

spectrofluorometric measurement (Verburg & Albert, 2016). Zooplankton samples 

were collected by hauling a net of 63 μm mesh and 100 mm diameter from 100 m 

depth to the surface. Samples were preserved in 4% formalin and stored until they 

were counted (3 subsamples) by an experienced technician using a compound 
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microscope (Verburg & Albert, 2016). A detailed account of sample collection is 

given in Verburg & Albert (2016). Vertical profiles of chlorophyll fluorescence and 

temperature were collected from Site A (Figure 3-1) between July 2014 and August 

2015. Vertical profiles for temperature, dissolved oxygen and chlorophyll 

fluorescence were taken using a RBR XR620f Conductivity-Temperature-Depth 

profiling system fitted with a chlorophyll fluorometer (Seapoint Sensors Inc., New 

Hampshire, USA).   

Food web sampling 

Pelagic and littoral habitats were sampled bi-monthly six times between September 

2014 and August 2015 to capture the annual mixing-stratification cycle. Six littoral 

sites and three deep-water pelagic sites were sampled (Figure 3-1). Littoral sites 

were chosen to be 200-600 m stretches of shoreline. The specific sampling site 

within this wider area was selected randomly by assigning the southern/western end 

of the shore a value of zero and the northern/eastern end a value of one, and then 

estimating the position along the shore that best aligned with a randomly generated 

decimal value between 0 and 1.  

Pelagic sampling – The three pelagic sampling sites, A, B and C, were located at 

depths of 150, 100, and 110 m, respectively. A sample was taken at the epilimnion 

(near-surface), metalimnion (mid-water column/DCM) and hypolimnion 

(profundal bottom water) at each site with a 5 L Van Dorn water sampler. Profundal 

samples were collected 2 – 5 m above the lake bed. Mid-water column samples 

varied in depth as they targeted the metalimnetic DCM when it was present. This 

depth was determined through inspecting the vertical chlorophyll fluorescence 

profile taken immediately prior to sampling at each site. When no DCM was present 

(June and August sampling), mid-water-column samples were collected from 40 m 

depth. Water samples from each depth were filtered through pre-ashed and weighed 

0.45 μm Whatman GF/C filters. Zooplankton samples were collected by hauling a 

100 μm mesh net of 25 cm diameter through the length of the water column. A 100 

μm mesh was used as the majority of zooplankton species in the lake (mostly 

crustaceans) are >100 μm (McCullum & Forsyth 1981), and the coarser mesh 

reduced contamination from phytoplankton. 

Littoral sampling – Littoral sites were sampled at three depths; 1, 5 and 20 m. A 

120 cm2 Ponar sampler was used to collect three surface sediment samples for 
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benthic invertebrates as well as benthic particulate organic matter randomly within 

a 5 m radius of each sample location. Beach seine nets were used to catch smelt, 

bullies and juvenile trout (< 400 mm length). The seine net was 5 m long by 1.5 m 

high, and was dragged for 20 m along the shoreline in 0.4 – 1.5 m water depth. If < 

two smelt or bullies were caught at a site, the net was dragged a second time, for 50 

m. Captured fish were immediately euthanized in a brine solution. Mussels were 

collected by snorkelling within a 15 m radius to 5 m depth. Attempts were made to 

collect crayfish in the same manner; however, these were successful only at one 

sampling site. In February SCUBA divers were used to collect mussels, crayfish 

and macrophytes from depths below 5 m. Divers descended to 15 m depth and 

progressively worked outwards in an increasing radius until 15 – 20 crayfish and 5 

– 10 mussels had been obtained. Ten crayfish and five mussels were selected to 

represent the size spectrum of each species, with the remainder returned to the lake. 

The selected specimens were euthanized and stored in brine until returned to the 

laboratory.  

Large trout sample collection – Samples of legal sized trout (>400 mm length) were 

collected from anglers’ catches during an annual fishing competition in March 2015 

and 2016. Fish were weighed and measured, and the tails (including white muscle) 

and livers were removed and stored on ice until return to the laboratory. These 

tissues were chosen as they are typically discarded by anglers and represent a 

gradient of tissue turnover rates (Heady & Moore, 2013). Collecting data from a 

fishing competition is typically biased towards larger fish (Hargrove et al., 2015). 

However, this competition used a range of award categories that encouraged anglers 

to submit a spectrum of legal-sized fish. This range of sizes was considered to 

provide representative samples of adult trout (> 400 mm).  

3.3.3 Sample preparation 

In the field, sediment samples were stirred in a bucket with an equal volume of lake 

water. The sediment suspension was then passed through a pre-ashed and weighed 

0.45 μm Whatman GF/C filter. The remaining water was drained from the sediment 

and the sediment was bagged and stored on ice until return to the laboratory. 

Surface-water was collected in a clean bucket at each site for analysis of particulate 

organic matter (POM). Up to three litres of sample water was passed through pre-

ashed, pre-weighed 0.45 μm Whatman GF/C filters. All sample filters were oven 

dried at 48°C for >48 h upon return to the laboratory. Fish and invertebrate samples 
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stored in NaCl brine were washed in freshwater. Fish were weighed and fork-length 

measured. Mussels were measured along their longest shell axis and crayfish size 

was assessed using orbital carapace length.  Tissue was removed for stable isotope 

analysis. For mussels and crayfish, samples were of the spatulate burrowing foot 

and tail muscle, respectively. Samples for smelt >15 mm, bullies >15 mm and trout 

<200 mm had their head and guts removed while smelt and bullies ≤15 mm were 

analysed in their entirety. For trout 200 – 400 mm, a segment of white muscle was 

removed for analysis. For trout > 400 mm, segments of liver, white muscle and fin 

were differentiated for sample analysis. Fin segment samples were taken down the 

length of the fin from base to tip, to provide a consistent ratio of soft and hard fin 

tissue, as isotopic variation occurs along the fin length (Hayden et al., 2015). 

Zooplankton samples were examined under a dissection microscope (10X 

magnification) to remove non-zooplankton material. Samples were then 

centrifuged, decanted and diluted with reverse osmosis (RO) water five times, to 

remove salt. Benthic invertebrates were removed from sediment samples in the 

laboratory by sorting and identifying with the naked eye. Samples were sorted into 

coarse taxonomic/functional groups (i.e., Chironomidae, snails and oligochaete 

worms). All samples for stable isotope analysis were stored in 1.5 ml Eppendorf 

snap-lock tubes and were oven dried at 48°C for >48 h.  

3.3.4 Organic sample δ15N and δ13C analysis  

All samples except POM were analysed at the Waikato Stable Isotope Unit 

(University of Waikato) by combustion using a Dumas elemental analyser (Europa 

Scientific ANCA-SL) interfaced to an isotope mass spectrometer (Europa Scientific 

20-20 Stable Isotope Analyser, Europa Scientific Ltd, Crewe, U.K.).  POM samples 

were analysed at the GNS Science National Isotope Centre (Wellington) by the 

same procedure on a Eurovector elemental analyser coupled to an Isoprime mass 

spectrometer (GV Instruments Ltd, Wythenshawe, U.k.). For both laboratories, 

results are reported with respect to VPDB and N-Air, normalized to an internal 

standard: leucine. The analytical precision is 0.3‰ and 0.5‰ for δ15N and 0.2‰ 

and 0.3‰ for δ13C for samples analysed in the GNS and University of Waikato 

laboratories, respectively.  

Compound specific amino-acid δ15N analysis of fish – Compound specific amino-

acid (CSIA-AA) δ15N analyses were performed on fish tissues to determine trophic 

position and corroborate bulk tissue δ15N trophic position estimates. Consumer 
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trophic position can be estimated from amino-acid δ15N values by calculating the 

difference between ‘trophic’ (amino acids that show strong trophic fractionation) 

and ‘source’ (show negligible trophic fractionation) amino-acids (Chikaraishi et al., 

2009). Three smelt, three trout and two bullies, all collected during February 2015, 

were selected for analysis representative of the size range for each species. CSIA-

AA analyses were conducted at the NIWA stable isotope ecological laboratory 

(Wellington, New Zealand). The methodology used to determine amino-acid δ15N 

values is described in detail in Chikaraishi et al. (2007). Briefly, fish tissues were 

hydrolysed in HCl followed by an n-hexane/dichloromethane wash to remove any 

hydrophobic constituents such as lipids then, finally, N-pivaloyl/isopropyl (Pv/iPr) 

derivatization. The δ15N values of derivatised amino-acids were then determined 

using a Delta V Plus mass spectrometer interfaced with an Ultra Trace GC gas 

chromatograph through a GC IsoLink combustion furnace, and liquid nitrogen cold 

trap (Thermo Fisher Scientific, Darmstadt, Germany). Measured isotopic 

compositions were corrected relative to known δ15N values for internal reference 

material (i.e., caffeine and leucine). All samples were analysed at least in triplicate. 

The average standard deviation of the multiple analyses per amino acid was 0.9‰, 

(range: 0.01 to 3.3‰). 

Trophic position was subsequently estimated using three methods. The first method 

was through difference between glutamic acid (Glu) and phenylalanine (Phe) δ15N 

values: 

𝑇𝑃𝐺𝑙𝑢−𝑃ℎ𝑒 =  [(𝛿15𝑁𝐺𝑙𝑢 −  𝛿15𝑁𝑃ℎ𝑒 − 3.4) 7.6] + 1⁄  

(Chikaraishi et al., 2009). Second, trophic position was calculated through the 

difference between mean δ15N of multiple ‘trophic’ and ‘source’ amino-acids: 

𝑇𝑃𝑀𝑒𝑎𝑛(𝑡𝑟𝑜𝑝ℎ−𝑠𝑜𝑢) =  [𝑥̅ (𝛿15𝑁𝑇𝑟𝑜𝑝ℎ𝑖𝑐) −  𝑥̅ (𝛿15𝑁𝑆𝑜𝑢𝑟𝑐𝑒 − 3.4) 7.6] + 1⁄  

where source amino acids were glycine and phenylalanine, and trophic amino acids 

were glutamic acid and alanine. Third, trophic position was estimated by difference 

between bulk tissue and an external baseline (Vander Zanden and Rasmussen 2001): 

𝑇𝑃𝐵𝑢𝑙𝑘 = [𝛿15𝑁𝐶𝑜𝑛𝑠𝑢𝑚𝑒𝑟 −  𝛿15𝑁𝐵𝑎𝑠𝑒 3.4] + 1⁄  

where baselines were grazing snails and zooplankton for littoral and pelagic food 

chains, respectively. Trophic position estimates from littoral and pelagic food 
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chains were weighted for consumers based on estimated littoral-pelagic diet 

contribution.  

3.3.5 Data analysis 

Time series data analysis – All statistical relationships were performed in R 

(version 3.4.1; R core team 2017), using the base package linear model (lm) 

function. Type II sums of squares were used in all analyses due to the unbalanced 

study design and co-varying predictor variables (Crawley, 2007). Temporal patterns 

of Lake Taupō Chl-a concentration and zooplankton abundance between 2000 and 

2008 were analysed to demonstrate the relationship between intra-annual patterns 

in pelagic primary and secondary producer biomass. Seasonal patterns in Chl-a and 

zooplankton as well as correlation between the two variables, were investigated by 

autocorrelation (ACF) and partial autocorrelation (partial ACF) models using the 

“>acf()” function within R (Crawley, 2007). Chl-a and zooplankton relationships 

were also graphically investigated by comparing mean monthly abundances. 

Graphical analysis of consumer vs. resource patterns, i.e. phase-plane analysis, is 

used to infer the nature of interactions. When consumer-resource abundances 

through time follow an orbital pattern, it indicates a stable limited cycle; the result 

of Lotka-Volterra predator-prey oscillations (Barraquand et al., 2017). Vertical 

profiles of chlorophyll fluorescence and temperature from Site A between July 2014 

and August 2015 were used to demonstrate pelagic seasonal dynamics for the study 

period. Thermocline depth was calculated for each month using the R package Lake 

Analyzer (Read et al., 2011) and Chl-a vertical distribution patterns, as well as 

thermocline depth, were analysed from depth distribution graphs. 

Bayesian isotope trophic niche analyses – Isotope based indices for trophic niche 

space were used to demonstrate food web level seasonal changes in diet diversity. 

The R package SIBER (Jackson et al., 2011) was used to derive convex hulls for 

bi-annual food web niche space using a Bayesian inferenced model. Community 

level niche was estimated by pooling samples from September and December and 

comparing with samples from June and August. The September-December and 

June-August periods represented periods of high and low pelagic zooplankton 

abundance, respectively; hereafter referred to as zooplankton-abundant and -scarce 

periods. Consumer groups included in the community level niche analysis were 

limited to those collected within both periods; smelt, bullies, crayfish, mussels, 

zooplankton and benthic macroinvertebrates. Niche space estimates were derived 
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using default priors, as described in Jackson et al. (2011), and with > 10,000 Markov 

Chain Monte-Carlo run iterations. 

Bayesian trophic mixing models – Stable isotope mixing-models using food web 

δ15N and δ13C data were employed to quantify consumer-resource interactions in 

Lake Taupō. First, overall annual food web interactions were quantified using 

MixSIAR (Stock & Semmens, 2016), a Bayesian mixing model used in R (version 

3.3.2; R core team 2015). Consistent trophic discrimination factors of Δ15N = 3.4‰ 

and Δ13C = 0.8‰ were used across all consumer groups, similar to published values 

(Vander Zanden & Rasmussen, 2001; McCutchan et al., 2003; Perkins et al., 2013), 

and consumer δ13C values were corrected for lipid content following published 

methods (Post et al., 2007). All samples from the nine sampling sites and six months 

were combined and sorted by organism group. All mixing model runs were visually 

inspected to ensure that consumer δ15N and δ13C data were constrained within the 

resource δ15N and δ13C iso-space. Model runs were performed until all three 

Markov chains converged based on both Gelman and Geweke diagnostics (Stock 

& Semmens, 2016). Typical Markov chain length was between 100,000 and 

1,000,000 iterations. All mixing models were performed using an uninformative 

prior.  

Intra-annual dietary patterns for zooplankton, smelt and bullies – Diet composition 

for mobile consumers (smelt and bullies) was compared across the six sampling 

months using the six sampling sites as the true unit of replication. Seasonal dietary 

shifts of smelt and bullies were quantified in MixSiar using δ15N and δ13C data from 

zooplankton and benthic macro-invertebrates to represent two end-members 

(pelagic and littoral trophic resources, respectively). Sampling site was included as 

a random factor within the model and sampling month was nested as a factor within 

that to compare intra-annual dietary changes. Seasonal zooplankton diet 

composition was determined by partitioning pelagic POM samples by collection 

depth; surface, DCM and hypolimnion to produce a three end-member mixing 

mode. The three pelagic sites were the true unit of replication.  

Intra-annual dietary patterns for trout – Trout > 400 mm were collected only during 

a single month so seasonal dietary patterns were not investigated. However, 

differences in stable isotopic turnover rates between liver (fast turnover), fin 

(intermediate turnover) and white muscle (slow turnover) (Heady & Moore, 2013) 

provide a practical method for qualitative assessment of diet changes within single 
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fish (Quevedo et al., 2009; Bond et al., 2016). Quantitative estimates of diet 

switching, on the other hand, are more difficult and require robust estimates of 

tissue-specific turnover rates (Bond et al., 2016). Muscle turnover rates can be 

estimated for fish of a given body mass raised to the power of 0.13 whereas 

splanchnic tissue is determined by thermoregulation tactics (Thomas & Crowther, 

2015). Heady & Moore (2013), who performed a controlled feeding experiment 

conducted on a population of rainbow trout, provide tissue turnover rates for muscle 

fin and liver. In brief, fish were conditioned on a δ13C and δ15N isotopically labelled 

diet for a period after which they were switched to a non-isotopically labelled diet. 

Individuals were sampled over the duration of the study, sacrificed and isotopic 

decay rates were quantified for various tissues (Heady & Moore, 2013). Estimated 

turnover rates for liver (range = 5 – 20, mean = 10 days) and fin (range = 10 – 35, 

mean = 15 days) were applied directly from Heady & Moore (2013). Muscle 

turnover rate was derived by applying a body mass correction (Thomas & Crowther, 

2014) to the turnover rate (Heady and Moore, 2012) to account for the considerable 

body mass discrepancy between the experimental fish (mean  = 150 g) and our study 

(mean  = 2570 g). Based on these studies, we assumed the mean muscle turnover 

time for trout was 65 days with 55 – 150 days representing a credible range.  

Temporal patterns in diet of large trout were quantified from tissue δ13C and δ15N 

data using MixSIAR. Diet composition was estimated based on six potential prey 

groups (smelt, bullies and crayfish, catfish, benthic macroinvertebrates and snails) 

from trout liver, fin and muscle samples. Zooplankton were omitted as a diet end-

member for two reasons. First, model runs were impractically slow and did not 

achieve suitable convergence with a seventh end-member of zooplankton included. 

Second, short runtime (50-iteration) models indicated that zooplankton were a 

negligible component of trout diet. δ15N values were corrected for tissue-specific 

trophic discrimination factors (Δ15NLiver = 1.4‰, Δ15NFin = 1.8‰, Δ15NMuscle = 3.4‰) 

and normalised to muscle values (Heady & Moore, 2013).    

3.4 Results  

3.4.1 Seasonal patterns in lake primary production 

Long-term (Jan 2000 – Jan 2009) surface-water Chl-a at Site A showed a winter 

peak in phytoplankton biomass (July-August) and low surface-water concentrations 

during summer (December-January) (Figure 3-2). Zooplankton also demonstrated 

a single annual peak, albeit delayed; annual zooplankton maxima were typically in 
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November-December and minima in July-August. Annual minima for Chl-a and 

zooplankton were on average 22 ± 9% and 20 ± 15% of annual maxima, 

respectively. Zooplankton abundance (m-2) and Chl-a between 2000 and 2009 each 

showed significant autocorrelation, with a 12 month lag (ACF = 0.3 and 0.7 

respectively) indicating an annual cycle of abundance. Strong partial 

autocorrelation effects on zooplankton at 10 months (partial ACF = 0.3) and Chl-a 

at five months (partial ACF = -0.4) and 11 months (partial ACF = 0.4) provide 

statistical evidence of complex interdependencies of the two cycles (Figure 3-2). 

This statistical analysis supports the graphical interpretation (phase-plane) of the 

relationship between monthly mean Chl-a and zooplankton. Between October and 

March Chl-a and zooplankton showed a stable limit cycle. From April through 

September, however, zooplankton showed a negative linear relationship with Chl-

a (Figure 3-2). Monthly chlorophyll fluorescence depth profiles from Site A 

between July 2014 and August 2015 show that biomass was greatest during winter 

mixing and that a DCM formed below the thermocline during summer (Figure 3-3).  
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Figure 3-2: Relationships between Lake Taupō chlorophyll a concentration (green line) and zooplankton 

counts (blue line) both from Site A between January 2000 and January 2009.  

 

3.4.2 Food web stable isotopes  

The relative effects of time (i.e., sampling month) and habitat type on δ15N and δ13C 

of functional groups was substantially different between consumer groups. 

Generally, temporal effects increased and spatial effects decreased with increasing 
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trophic level (Appendix 3.1). Both δ15N and δ13C varied significantly with time 

(ANOVA: P <0.05) in trout (using tissue turnover as a proxy for time effects), smelt 

and bullies. By contrast, zooplankton tissue varied with time only for δ13C (P <0.05), 

and there was no variation in δ15N and δ13C for pelagic POM, littoral POM, benthic 

POM, benthic macroinvertebrates and catfish. A summary of ANOVA analyses is 

provided in Appendix 3.2.  

 

Figure 3-3: Contour plot showing vertical distribution of Chl-a in relative fluorescence units (RFU) from Lake 

Taupō at Site A between July 2014 and August 2015.  

 

Food web structure – Annual averages of δ15N and δ13C for different trophic groups 

conformed to the “A-frame” shape of a nested food web in isotopic bi-plot space 

(Figure 3-4). Phytoplankton sampled across all three pelagic sites over the six 

months had a mean isotopic signature of δ15N = -1.2 ± 5.4 (95% CI) ‰ and δ13C = 

-24.9 ± 3.3‰, slightly lower than benthic microalgae (δ15N = 1.9 ± 1.5‰ and δ13C 

= -23.1 ± 3.2‰) but substantially different from littoral macrophytes/epiphytic 

algae (δ15N = 1.8 ± 2.2‰ and δ13C = -12.1 ± 3.7‰). The mixSIAR model indicated 

that trout > 400 mm received 69 ± 17% of their diet from pelagic resources. Large 

trout predominantly preyed upon smelt, with < 1 ± 3% cannibalistic predation on 

juvenile trout. The model indicated that bullies, catfish and crayfish comprised 14 

± 11, 7 ± 8, and 4 ± 6% respectively, of the diet of large trout. Juvenile trout and 
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smelt were predominantly zooplanktivorous, obtaining 96 ± 11% and 75 ± 17%, 

respectively, of their diet from zooplankton. The diet of bullies was predicted to be 

73 ± 23% benthic macroinvertebrates. Crayfish and catfish were true omnivores. 

Crayfish diet was predicted to comprise 52 ± 13% and 47 ± 29% benthic 

macroinvertebrates and macrophytes, respectively, while catfish diet was 37 ± 22% 

macrophytes, 27 ± 9% koura, 26 ± 12% benthic macroinvertebrates and 12 ± 6% 

snails. Of the primary consumers, model output indicated zooplankton diet was > 

99 % pelagic phytoplankton and benthic macroinvertebrate diet was 41 ± 15% 

macrophytes/epiphytic algae, 53 ± 29% benthic microalgae and 5 ± 14% 

phytoplankton. Freshwater mussel diet was 52 ± 17% phytoplankton and 46 ± 10% 

benthic microalgae.   

  

Figure 3-4: Values of δ15N and δ13C for food web constituents of Lake Taupō averaged across all nine sampling 

sites and six sampling events (2014-15). Black dots represent functional group mean values and ellipses 

represent one standard deviation.  
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Seasonal community niche space – The food web trophic niche space (convex hull 

area) was substantially greater during the period of scarce zooplankton abundance 

(21.5 ± 1.5‰2) compared to during the period of high zooplankton abundance (16.3 

± 1.4‰2) (Figure 3-5). The observed differences in niche space between the two 

periods was due to a larger range in δ15N (2.1‰) and δ13C (2.6‰) values during the 

scarce period than the abundant period.  The overall community trophic position 

and littoral-pelagic ratio remained similar between the periods. The community 

centroid was similar between the two periods. During the scarce period the 

community centroid (δ15N = 5.0‰, δ13C = -20.8‰) was relatively lower in δ15N 

space than during the abundant period (δ15N = 5.1‰, δ13C = -20.8‰), indicating 

that seasonal niche expansion was not biased towards a certain direction in iso-

space (Figure 3-5).  

 

Figure 3-5: Community trophic niche space compared between replete (high pelagic resource availability) and 

deplete (low pelagic resource availability) periods for selected members of the Lake Taupō food web.  

 

Temporal zooplankton mixing model – Mixing model results for estimating the 

contribution to zooplankton diet of phytoplankton from surface water, the DCM, 

and bottom water showed that zooplankton fed more in the bottom water during 
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stratification than in the mixing period (Figure 3-6). Phytoplankton from surface 

waters had the smallest contribution to zooplankton diet and bottom-water 

phytoplankton contributed most during December and April. The contribution of 

DCM phytoplankton to zooplankton diet was greatest during September and June, 

the beginning and end of stratification respectively (Figure 3-6).  

 

Figure 3-6: Zooplankton diet contribution from phytoplankton grouped by vertical habitat of surface water, 

deep chlorophyll maximum (DCM) and bottom water.  

 

Temporal smelt and bully mixing model – Results from the mixing model for dietary 

contribution of zooplankton and benthic macroinvertebrates to smelt and bullies 

(i.e., mobile meso-predators) demonstrated that the dietary reliance on littoral 

resources varied substantially over the year for each species (Figure 3-7). Between 

September 2014 and August 2015 consumption of zooplankton fluctuated between 

8 ± 8 and 52 ± 19% for bullies and 18 ± 22 and 84 ± 15% for smelt (Figure 3-7). 

This equated to an average increase in littoral diet contribution of 48% for smelt 

and 43% for bullies, which was greater than the difference (39%) of littoral-pelagic 

diet differentiation in smelt and bullies. Smelt and bully diets were strongly 

correlated (R2 = 0.96) with the contribution of zooplankton greatest in September 

2014 and declining to a minimum in August 2015. Variations in the contribution of 
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zooplankton to smelt and bully diet corresponded broadly with changes in 

zooplankton abundance.  

 

Figure 3-7: Patterns in littoral diet for smelt and bullies over an annual cycle, September 2014 – August 2015. 

Estimates of contribution of littoral resources to the diet of smelt and bullies are derived from the MixSIAR 

δ15N and δ13C mixing model.  

 

Temporal trout mixing model – Results from mixing model analysis of stable 

isotope results from trout muscle (turnover 65 days), fin (15 days) and liver (10 

days) tissue suggest that trout fed increasingly on littoral prey over a 65-day period 

(14 Jan to 14 Mar 2015). Based on muscle tissue, smelt comprised 69 ± 17% of 

trout diet, bullies 14 ± 5%, catfish 7 ± 6%, koura 4 ± 4%, snails 3 ± 2% and benthic 

macroinvertebrates 2 ± 1% (Figure 3-8). Based on liver samples, the contribution 

to trout diet from smelt, bully, catfish and crayfish diet was 61 ± 12, 8 ± 4, 8 ± 11 

and 2 ± 2%, respectively, with much larger contributions from snails and benthic 

macroinvertebrates; 19 ± 17% and 7 ± 9%, respectively. Fin samples showed the 

lowest contribution of smelt to trout diet (52 ± 24%) of any of the tissues, while the 

contribution of all other prey increased (Figure 3-8). A comparison with previous 

trout and smelt diet records from Lake Taupō indicates that the littoral diet 

contribution and the degree of diet switching observed in trout and smelt was 

greater in our study than previously reported (Table 3-2). Mean littoral diet 
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contribution of trout and smelt changed from 80 ± 7% in 1989 to 70 ± 13% in this 

study and 94 ± 4% in 1983 to 82 ± 6% in this study respectively. These increases 

in littoral diet reliance were associated with changes in the intra-annual diet 

variation for trout (22% in 1989 and 35% in this study) and smelt (34% in 1989 and 

72% in this study). 

 

Figure 3-8: Diet composition of trout diet composition estimates derived from δ15N and δ13C values of muscle 

(60 – 150 days), fin (10 – 50 days) and liver (5 – 30 days) tissue (with different turnover rates).  

 

Trophic position – Respective trophic position estimates for smelt, bullies and trout 

from the two CSIA-AA methods (‘Glu-Phe’ and ‘averaged’ trophic-source) 

produced similar values across fish species. Bulk isotope trophic position estimates 

were similar to the CSIA-AA methods for smelt and yielded slightly lower 

estimates for bullies and trout (Figure 3-9). The trophic position estimates for smelt 

were 2.6 ± 0.7, 2.4 ± 0.4 and 2.5 ± 0.0 (± 1 SD) based on the ‘Glu-Phe’, ‘averaged’ 

trophic-source and bulk isotope methods respectively. For bullies the trophic 

position estimates were 2.7 ± 0.2, 2.8 ± 0.1 and 2.1 ± 0.2 using the Glu-Phe, 

averaged and bulk methods. In the same order, trout trophic position estimates were 

3.9 ± 0.1, 3.5 ± 0.1 and 3.1 ± 0.0. These results infer the same trophic structure as 

the mixing model analyses. A significant positive relationship was found between 

the littoral proportion of consumer’s diet and the discrepancy between the CSIA-
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AA and bulk isotope method (P = 0.04, R2 = 0.52). Variance associated with smelt 

CSIA-AA values was substantially greater than for bullies and trout.   

Table 3-2: Summary of trout and smelt diet obtained from pelagic resources from this study and previous 

studies. Data for trout are from Cryer (1991) and smelt from Stephens (1984). 

  Year Period % Pelagic ± SD Reference 

Trout 
2014-
2015 

Annual 70 13 
This study 

  January 87 15  
   March 52 17   

 1989 Annual 80 7 Cryer 1991 

  December 95 2  
    April 73 16   

Smelt 
2014-
2015 

Annual 82 6 
This study 

  September 98 2  
   August 26 13   

 
1981 Annual 94 4 

Stephens 
1984 

  January 99 1  
    August 65 28   

 

 

Figure 3-9: Trophic position estimates for common smelt, common bullies and rainbow trout compared 

between three methods; bulk isotope value, averaged essential and non-essential amino-acids and glutamine – 

phenylalanine.  
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3.5 Discussion  

Phytoplankton and zooplankton seasonal abundance varied strongly in Lake Taupō 

and the food web shifted broadly between reliance on littoral and pelagic resources. 

Our hypotheses were therefore confirmed by findings that: i) seasonal peaks in 

pelagic resource abundance (zooplankton) corresponded to decreased food web 

trophic niche size; and ii), trout, smelt, bullies and zooplankton all showed diet 

changes in response to lower pelagic resource availability, with the magnitude of 

changes positively related to trophic level. The Lake Taupō food web resembles the 

generalised nested “A-frame” structure where higher trophic level consumers 

integrate pelagic and littoral food chains to a greater extent than lower trophic level 

consumers. This food web structure is seasonally dynamic. The findings of this 

study are addressed below by discussing: 1), seasonal dynamics of planktonic 

interactions; 2), seasonal patterns in food web structure; 3), diet patterns of 

consumer groups; and 4), food web dynamics in the context of GEC drivers.  

3.5.1 Seasonal phytoplankton-zooplankton dynamics   

Alternate periods of mixing and stratification led to strong temporal and spatial 

variations in the distribution of phytoplankton biomass and zooplankton abundance 

in Lake Taupō. During winter mixing, when phytoplankton biomass is evenly 

distributed throughout the water column, total volumetric pelagic Chl-a abundance 

is on average five times greater than during summer stratified periods (Vincent, 

1983) when it is concentrated in the metalimnion (Hamilton et al., 2010). Pelagic 

zooplankton abundance (individuals m-3) also showed a concomitant seasonal cycle 

of similar magnitude to Chl-a. The significant partial-autocorrelation effects for 

zooplankton abundance and Chl-a concentration together with the phase-plane 

interpretation suggest highly variable interactions of phytoplankton and 

zooplankton over an annual cycle, with two distinct states; one from October 

through March when Chl-a and zooplankton display a stable limit cycle, indicative 

of Lotka-Volterra top-down grazing control (Barraquand et al., 2017) and the 

second from April through September when nutrient availability determines 

bottom-up control of phytoplankton. These states reflect dominance by grazing 

interactions or seasonal mixing, respectively (Vasseur et al., 2014). Conversely, as 

is typical for many other lakes (Vadeboncoeur et al., 2008; Brothers, Vadeboncoeur 

& Sibley, 2016), littoral autotrophic biomass remains relatively constant throughout 

the year in Lake Taupō (Hawes & Smith, 1994). Benthic macroinvertebrate 
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abundance is correspondingly seasonally invariant in large lakes (Forsyth & 

McCullum, 1981; Vadeboncoeur et al., 2003). Littoral production may be small 

relative to pelagic production, but can become a critical resource during periods of 

extended stratification.  

3.5.2 Food web structure   

The δ15N and δ13C values of the Lake Taupō food web resembled the previously 

observed nested ‘A-frame’ structure, adding to the growing recognition that mobile 

consumers play an important role in linking multiple food chains in aquatic systems 

(Vander Zanden & Vadeboncoeur, 2002; Sierszen et al., 2014; McMeans et al., 

2016). Lower trophic levels showed strong association with either pelagic or littoral 

food chains while higher trophic levels increasingly integrated the two. The 

observed trophic structure was broadly confirmed by the CSIA-AA data. Bulk 

isotope and CSIA-AA-derived trophic position estimates were most similar in 

consumers that had greater pelagic diet contributions. Underestimating trophic 

chain length from bulk isotope methods is common (Steffan et al., 2013; Bowes & 

Thorp, 2015) as CSIA-AA methods reveal ‘cryptic’ trophic diversity associated 

with microbial interactions such as detritivory (Steffan et al., 2015). This ‘cryptic’ 

trophic diversity reflects the greater trophic complexity in littoral than pelagic food 

chains (Schindler & Scheuerell, 2002; Vadeboncoeur et al., 2002; McMeans et al., 

2016).  We expanded the nested ‘A’-frame concept of trophic structure by 

demonstrating a dynamic response to seasonal environmental conditions. The food 

web contracted during the pelagic zooplankton-abundant period (the onset of a 

stable limit-cycle), and expanded during the zooplankton-scarce period.  

Consumers used a wider range of trophic-resources when zooplankton abundance 

was lowest. Given the dominant contribution of zooplankton to secondary 

production in Lake Taupō (James 1987), our study demonstrates that food web 

expansion compensates for resource scarcity. The extent food webs can expand and 

contract in response to perturbations  determines stability (Tunney et al., 2012). 

Considering seasonal dynamics of specific consumer groups will clarify the 

relationship between food web expansion and seasonally reduced resource 

availability.  

3.5.3 Seasonal diet patterns of consumer   

Coherent seasonal diet patterns were observed across trophic levels; zooplankton, 

meso- and top-predators.  During summer stratification, when a substantial DCM 
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was present, zooplankton primarily fed on POM below the thermocline (i.e., in the 

DCM and hypolimnion). The high contribution of bottom-water POM to 

zooplankton diet at this time was unexpected given bottom-water POM was less 

abundant and had lower Chl-a/C ratios (Verburg & Albert, 2016) than POM from 

surface water and the DCM. Low Chl-a/C ratios indicate a low nutritional quality 

food resource (Francis et al., 2011). Zooplankton migrate diurnally from dark 

bottom-waters where they avoid visual predation and ultraviolet radiation to feed 

within the trophogenic zone (Jolly, 1965; Rhode et al., 2001; Winder et al., 2004). 

As elevated hypolimnetic POM diet contributions coincide with annual recruitment 

of young-of-year planktivores (smelt) in Lake Taupō (Cryer, 1991), our data 

suggest predator avoidance drives zooplankton to increase time spent in bottom-

waters and consume resources of low-quality during stratification.  

Incidentally, the stratified period coincides with meso-predator (smelt and bully) 

diets becoming more littoral. Variations in pelagic primary production appear to 

determine switches in meso-predator diets. However, the highest pelagic 

zooplankton abundances (in December) were not coincident with the period of 

maximum zooplankton contribution to smelt diet (September); likely a reflection of 

zooplankton predator avoidance. Notably, littoral and pelagic resource use patterns 

by smelt and bullies were highly synchronous over the annual cycle. Synchronicity 

of seasonal abundance and/or resource use by species demonstrates predominance 

of bottom-up control as opposed to inter-specific competition (Vasseur et al., 2014) 

and was surprising to observe in Lake Taupō given differential morphological 

adaptations and published diet records suggest smelt and bullies have strong niche 

differentiation (i.e., asynchronous dynamics) (Rowe et al., 2001; Ward et al., 2005). 

The seasonal pattern of pelagic resource availability (zooplankton abundance) was, 

however, the major influence on both species’ diets. Smelt and bullies are 

functionally typical of meso-predatory zooplanktivores and benthivores, 

respectively (Rowe et al., 2001; Ward et al., 2005) and as such, demonstrated diet 

patterns likely representative of functional responses for lake food webs. 

Rainbow trout showed the greatest littoral diet shift over the stratified period; 0.31% 

day-1 compared to 0.14 and 0.12% day-1 in smelt and bullies, respectively. Top 

predators typically have varied diets (McMeans et al., 2016); a trait which provides 

stability to food webs (Rooney et al., 2006; Wootton, 2017). Our study expands this 

understanding by demonstrating that top-predators adjust diet to resource 
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abundance more rapidly than lower trophic levels. Faster diet switching rates 

suggest top-predators may disproportionately regulate food web temporal dynamics 

(McMeans et al., 2015). CSIA-AA data validated trout muscle tissue as an indicator 

of recent diet history (i.e., approx. 65 days prior to capture). Phenylalanine δ15N 

(trophic source indicator) of trout tissue was enriched relative to smelt and bullies, 

indicating different trophic sources.  The pelagic baseline (i.e., phytoplankton) δ15N 

values in Lake Taupō varied seasonally, which is characteristic of lakes (Syväranta, 

Tiirola & Jones, 2008). The trophic baseline mismatch between trout and smaller 

bodied smelt and bullies reflects the longer turnover time of trout tissue (Thomas 

& Crowther, 2014).   

3.5.4 Principles of seasonal lake food web dynamics  

The Lake Taupō food web has been considered to be supported predominantly by 

pelagic production (Rowe & Schallenberg, 2004). Globally, food webs in large 

lakes are primarily pelagic-based due to lake morphology and productivity 

(Vadeboncoeur et al., 2003; Eloranta et al., 2015). Top-predator pelagic diet 

proportion decreases with relative littoral habitat area and reduced pelagic 

productivity (Vadeboncoeur et al., 2003). Elevated pelagic productivity has the 

compounding effect of reducing littoral production through reduced water clarity 

(Vadeboncoeur et al., 2008; Brothers, Vadeboncoeur & Sibley, 2016). Predictions 

of pelagic diet contribution to consumers commonly assume steady-state trophic 

interactions, as many systems are only sampled annually (Vadeboncoeur et al., 

2003; Janjua & Gerdeaux, 2011). Our study shows seasonal forcing is also a strong 

driver of littoral-pelagic coupling. Seasonal diet switching results from temporally 

differentiated resource pulses (Hayden et al., 2014; Dalu et al., 2017; Mazumder et 

al., 2017; Peralta-Maraver et al., 2017). These dynamics need to be considered for 

defining trophic structure. For example, during zooplankton-abundant periods 

zooplankton and mussels had indistinguishable δ15N and δ13C values, yet during 

scarce periods values were substantially different. Freshwater mussels are 

commonly used to represent δ15N baselines of pelagic food chains (Vander Zanden 

& Rasmussen, 2001; Post, 2002) but our study suggests they would give erroneous 

pelagic δ15N baseline estimates when pelagic productivity is low.  

The temporal dynamics of food webs in lakes can be characterised by both pelagic-

littoral coupling and resource variability. These two components represent research 

themes in food web theory. Pelagic-littoral coupling is addressed in research on 
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food chain linking, while the temporal variability in resource supply is considered 

in research on resource pulses. Principles from these research fields can be used to 

generalise our findings and inform seasonally explicit lake food web responses to 

altered environmental forcing conditions (e.g., due to GEC drivers).  Consumption 

across food chains by consumers/predators is destabilising when the comparative 

productivity of the food chains is highly imbalanced (Holt, 1977; Ward, McCann 

& Rooney, 2015). In lakes, higher pelagic production and resulting increased 

biomass at higher trophic levels can increase top-down pressure on littoral food 

chains, making them more susceptible to collapse (Vadeboncoeur et al., 2005; 

Ward, McCann & Rooney, 2015).  Increasing the period between resource pulses 

in one food chain can increase the top-down pressure in a linked food chain (Holt, 

2008; Nowlin, Vanni & Yang, 2008; Wollrab, Diehl & De Roos, 2012). Together, 

these food web responses suggest the resilience of large lake food webs will be 

compromised where there is an increase in either periods between pelagic 

production pulses or the ratio of pelagic to littoral production (i.e. increase pelagic 

or decrease littoral production).  

3.5.5 A case study on seasonally explicit food web vulnerabilities   

Our study provides a framework from which seasonally explicit effects of GEC 

drivers on lake food webs can be explored. Smelt and trout have historically (pre-

1990) had a higher proportion of pelagic diet. The recent (post-2005) pelagic diet 

reduction coincides with a substantial decline in trout biomass (Dedual, 

unpublished data). The proportionately small littoral area in Lake Taupō results in 

a small benthic macroinvertebrate biomass (41 t dry wt) (Forsyth & McCallum, 

1981) relative to zooplankton biomass (227 t) (James, 1987). Combined, these food 

sources support around 35 t of smelt (Cryer, 1991). During troughs in pelagic 

productivity, when > 75% of smelt diet can be comprised of benthic 

macroinvertebrates, smelt predation has the potential to strongly limit 

macroinvertebrate abundance (Vadeboncoeur et al., 2005). This could be an 

important consideration for fisheries management. Environmental forcing, through 

the seasonal pelagic cycle, may alter food web dynamics and impact ecosystem 

resilience. Accounting for food web seasonal dynamics when considering lake food 

web responses to GEC effects (e.g., climate warming, eutrophication and increased 

DOC input) provides a novel perspective which identifies plausible food web 

responses and feasible management interventions warranting future investigation 

(Table 3-3). Conversely, the impacts of invasive species are species-specific and 
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less predictable.  Invasive species, such as dreissenid mussels (Higgins et al., 2014; 

Sterner et al., 2017) and mysid shrimp (Ellis et al., 2011) can produce trophic bottle-

necks. The recent invasion of D. galeata in Lake Taupō (Duggan et al. 2006), which 

has an affinity for low-light environments (Rhode et al.,2001; Winder et al., 2004), 

could limit pelagic resource availability for smelt and trout during the stratified 

period. These scenarios are broadly applicable to large oligotrophic lakes (Shimoda 

et al., 2011; Sommer et al., 2012; Sterner et al., 2017). 

3.5.6 Summary   

Food webs are dynamic networks highly responsive to environmental conditions. 

Nevertheless, these interactions are often distilled into a static interpretation.  We 

demonstrated food web responses to seasonal pelagic forcing patterns typical of 

deep, oligotrophic lakes. In doing so, we demonstrated the significance of 

environmental conditions (mixing processes and primary productivity) on food web 

dynamics. At lower (planktonic) trophic levels, environmental forcing results in 

abundance oscillations and switching between bottom-up and top-down control. At 

meso- and top-predator trophic levels, it results in seasonally dynamic littoral-

pelagic food chain coupling. These responses manifest as expansion and contraction 

of the food web isotopic niche space to low and high pelagic resource availability. 

Considering the dynamic relationship between trophic interactions and 

environmental forcing, provides a framework from which food web responses to 

GEC scenarios can be considered and management responses evaluated.  The 

findings observed here for Lake Taupō have broad implications for other large 

temperate lakes. Synthesising physical limnology, biogeochemistry and food web 

processes will help food web management of other large, deep and oligotrophic 

temperate lakes consider seasonal effects. 
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Table 3-3: Impacts of global environmental change (GEC) drivers of lake food webs when explicitly considering seasonal forcing patterns.  

GEC driver GEC response 
Effect on seasonal pelagic 
resource fluctuation 

Food web 
response Example 

Suggested food web 
management 
response 

Climate 
warming 

Prolonged 
stratification 

Reduced frequency of 
pelagic pulse - extended 
period of low pelagic 
productivity 

Littorification of 
lake food web 

Lake Tanganyika 
(O'Reilly et al. 
2003; Verburg et al. 
2003) 

Increased 
management focus on 
littoral chain 

Increased 
surface run-off 

Increased DOC 
input 

Diminished fluctuation - 
elevated alternative energy 
source for zooplankton 
during periods of low 
phytoplankton production 

Reduced coupling 
to littoral habitats 
by pelagic 
consumers 

Scandinavian 
boreal lakes 
(Deininger et al. 
2017) 

Minimal intervention - 
positive food web 
effects 

Eutrophication 

Increased 
pelagic 
production 

Increased seasonal 
fluctuation in 
phytoplankton production 

Seasonally 
elevated top-down 
effects of littoral 
food chain 

Food web models 
(Vadeboncoeur et 
al. 2005; Ward et 
al. 2015) 

Catchment nutrient 
management 

Lake-shore 
urbanisation 

Littoral habitat 
degradation 

Increased fluctuation - 
diminished littoral 
production 

Reduced littoral 
secondary 
production to 
support higher 
trophic levels 

North American 
temperate lakes 
(Francis and 
Schindler 2006; 
Sass et al. 2012) 

Littoral habitat 
restoration, e.g. 
additions of woody 
debris 
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3.7 Appendices  

Appendix 3-4: Summary of Lake Taupō food web δ15N and δ13C values by functional group, month and habitat.  

Functional group N Month Habitat δ13C ± 95% CI δ15N ± 95% CI Functional group n Month Habitat δ13C ± 95% CI δ15N ± 95% CI 

Benthic POM 1 September Littoral - 1 m -24.9  2.3  Macrophyte 2 Sept Littoral - 5 m -13.5 1.8 0.6 1.6 

Benthic POM 6 February Littoral - 1 m -21.3 2.7 1.0 3.5 Macrophyte 1 Dec Littoral - 5 m -11.7  3.7  
Benthic POM 6 April Littoral - 1 m -21.2 2.5 0.7 1.9 Macrophyte 4 Feb Littoral - 5 m -13.0 2.7 2.7 0.5 

Benthic POM 6 June Littoral - 1 m -23.8 3.0 2.3 1.2 Epiphyte 1 Sept Littoral - 5 m -18.0  1.5  
Benthic POM 6 August Littoral - 1 m -25.8 1.9 3.2 0.7 Epiphyte 2 Feb Littoral - 5 m -15.7 5.9 0.7 0.5 

Benthic POM 3 September Littoral - 5 m -19.5 3.6 2.0 0.6 Benthic POM 2 February Littoral - 20 m -24.5 1.3 4.2 1.1 

        Benthic POM 2 April Littoral - 20 m -24.3 0.3 2.9 1.5 

Suspended POM 2 September Pelagic - Bottom -20.5 5.6 1.8 1.0 Suspended POM 3 September Pelagic - DCM -25.6 1.6 -4.8 12.4 

Suspended POM 3 December Pelagic - Bottom -26.1 1.0 -0.4 4.5 Suspended POM 3 December Pelagic - DCM -25.0 0.9 -5.5 1.3 

Suspended POM 3 February Pelagic - Bottom -23.3 0.7 2.3 1.2 Suspended POM 3 February Pelagic - DCM -26.7 4.8 -0.7 4.6 

Suspended POM 3 April Pelagic - Bottom -20.4 3.3 3.4 1.4 Suspended POM 3 April Pelagic - DCM -24.9 1.7 -1.2 7.1 

Suspended POM 2 June Pelagic - Bottom -26.7 1.5 0.0 0.0 Suspended POM 2 June Pelagic - DCM -23.4 2.4 0.0 0.0 

Suspended POM 3 August Pelagic - Bottom -26.5 0.4 1.6 1.7 Suspended POM 3 August Pelagic - DCM -25.0 1.0 3.5 0.5 

Suspended POM 5 September Littoral -24.0 2.7 -3.1 11.1 Suspended POM 3 September Pelagic - Surface -23.8 5.7 0.3 3.0 

Suspended POM 5 December Littoral -25.1 0.9 -3.1 4.5 Suspended POM 3 December Pelagic - Surface -26.8 2.2 -2.1 8.2 

Suspended POM 6 February Littoral -26.9 2.2 -9.6 4.8 Suspended POM 3 February Pelagic - Surface -23.2 2.7 -4.9 4.6 

Suspended POM 6 April Littoral -22.8 1.2 -0.7 2.8 Suspended POM 3 April Pelagic - Surface -23.3 9.5 -1.1 6.2 

Suspended POM 6 June Littoral -26.4 0.6 2.2 1.0 Suspended POM 2 June Pelagic - Surface -22.4 0.9 0.0 0.0 

Suspended POM 6 August Littoral -27.9 0.6 1.2 2.7 Suspended POM 3 August Pelagic - Surface -23.3 2.3 3.8 0.3 

Juv. Trout 1 September Littoral -24.8  9.7  Kakahi 36 February Littoral -22.6 0.3 3.7 0.2 

Juv. Trout 12 December Littoral -24.8 0.7 6.4 0.6 Kakahi 16 September Littoral -23.7 0.5 3.6 0.3 

Juv. Trout 1 February Littoral -29.8  5.5  Koura 19 February Littoral --15.2 2.1 6.0 0.4 

Juv. Trout 1 August Littoral -25.6  10.6  Koura 13 June Littoral --16.9 2.3 5.8 0.5 

BMI 1 September Littoral - 1 m -20.9  6.7  Zooplankton 8 Sept Pelagic -24.8 1.1 4.2 2.5 

BMI 1 Dec Littoral - 1 m -23.6  4.3  Zooplankton 3 December Pelagic -21.6 2.6 2.0 1.1 

BMI 1 June Littoral - 1 m -20.1  4.0  Zooplankton 5 February Pelagic -25.1 0.9 1.3 1.3 

BMI 13 September Littoral - 5 m -14.8 0.8 3.5 0.2 Zooplankton 4 April Pelagic -18.7 1.8 3.6 1.1 

BMI 1 April Littoral - 5 m -12.4  0.6  Zooplankton 6 June Pelagic -24.7 2.4 1.7 0.9 

BMI 6 April Littoral - 20 m -21.4 0.3 3.8 0.5 Zooplankton 6 August Pelagic -26.3 1.6 1.9 1.3 

Bully 24 September Littoral -22.0 1.7 6.0 0.3 Smelt 5 September Littoral -24.8 0.8 7.6 0.4 

Bully 5 December Littoral -20.9 0.9 7.0 0.1 Smelt 12 December Littoral -24.8 0.9 5.8 0.8 

Bully 19 February Littoral -19.8 1.4 6.7 0.5 Smelt 33 February Littoral + pelagic -24.5 0.8 6.1 0.1 

Bully 15 April Littoral -20.9 1.1 6.9 0.3 Smelt 21 April Littoral + pelagic -22.3 1.1 6.5 0.2 

Bully 21 June Littoral -18.0 1.5 7.0 0.3 Smelt 31 June Littoral -22.4 0.5 7.0 0.1 

Bully 21 August Littoral -17.6 1.3 7.2 0.4 Smelt 23 August Littoral -22.2 1.0 6.4 0.4 

Catfish 5 Muscle Littoral -17.7 3.8 7.0 0.8 Adult Trout 34 Muscle Littoral + pelagic -23.2 0.5 9.9 0.1 

Catfish 5 Fin Littoral -15.9 3.0 6.5 0.9 Adult Trout 36 Fin Littoral + pelagic -21.7 0.5 9.1 0.1 

Catfish 5 Liver Littoral -18.4 2.8 6.1 0.8 Adult Trout 36 Liver Littoral + pelagic -24.0 0.6 8.6 0.2 
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Appendix 3-5: Summary of linear model results for predictors of variation in tissue δ15N and δ13C values for Lake Taupō species groups.  

   δ15N    δ13C    
 Response DF SS MS F P SS MS F P 

Trout Tissue type 2 1.79 0.89 4.50 0.02 20.03 10.01 3.41 0.05 
 Location caught 5 2.11 0.42 2.13 0.09 15.90 3.18 1.08 0.39 
 Residuals 28 5.55 0.20   82.31 2.94   

Smelt  Site 5 7.97 1.59 6.13 < 0.01 156.61 31.32 14.62 < 0.01 
 Month 5 28.25 5.65 21.73 < 0.01 132.56 26.51 12.38 < 0.01 
 Month:Site 13 0.12 < 0.01 0.04  125.72 9.67 4.52 < 0.01 
 Residuals 95 28.09 0.26   203.47 2.14   

Bully Site 5 17.19 3.44 6.33 < 0.01 76.96 15.39 1.48 0.20 
 Month 5 9.80 1.96 3.61 0.01 385.52 77.10 7.42 < 0.01 
 Month:Site 12 4.03 0.34 0.62 0.82 96.07 8.01 0.77 0.68 
 Residuals 81 44.02 0.54   851.90 10.39   

Zooplankton Site 2 1.83 0.92 0.46 0.64 13.35 6.67 1.28 0.30 
 Month 4 11.69 2.92 1.48 0.25 158.55 39.64 7.58 < 0.01 
 Residuals 17 33.50 1.97   88.88 5.23   

BMI Site 3 11.98 3.99 2.91 0.05 320.04 160.02 37.64 < 0.01 
 Month 3 8.28 2.76 2.02 0.13 60.29 20.10 4.73 0.01 
 Depth 2 9.39 4.70 3.43 0.04 24.16 8.06 1.89 0.15 
 Species 3 7.15 2.38 1.74 0.18 20.58 6.86 1.61 0.20 
 Residuals 38 52.04 1.37   161.56 4.25   

Pelagic POM Location 2 36.87 18.43 1.03 0.36 7.40 3.70 0.36 0.70 
 Month 5 159.90 31.98 1.79 0.14 49.88 9.98 0.98 0.44 
 Depth 2 85.11 42.56 2.39 0.10 18.79 9.40 0.92 0.41 
 Residuals 41 730.74 17.82   408.05 10.20   

Benthic POM Location 5 31.74 6.35 0.88 0.52 52.99 10.60 1.07 0.42 
 Month 3 24.36 8.12 1.13 0.37 90.28 30.09 3.04 0.06 
 Residuals 15 108.26 7.22   148.58 9.91   
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4. Chapter four 

Seasonal and spatial variations in consumer 

nitrogen excretion in a large, oligotrophic 

lake: Evidence from stable isotope analyses 

4.1 Abstract 

Determining spatial and temporal patterns of contributions to nutrient cycling by 

consumer excretion, or consumer nutrient recycling (CNR), is an elusive goal. 

Stable isotope analysis of nitrogen has significant potential as it enables in situ 

contributions of CNR to nitrogen cycling to be examined. Trophic fractionation of 

nitrogen results in excretion of depleted δ15N by consumers. Hence, substantially 

δ15N depleted NH4
+, NO3

- and particulate organic matter (POM) is expected to 

indicate the contribution of CNR at any given point in space and time. This study 

applied stable isotope analyses to investigate the contribution of CNR in a large 

oligotropic lake, Lake Taupō, New Zealand, between habitats (epilimnion, 

metalimnetic deep chlorophyll maximum (DCM), hypolimnion and littoral zone) 

over an annual mixing cycle. Firstly, we compared consumer tissue and excretion 

δ15N values to validate that consumer excretion produces a 15N-depleted nutrient 

source; secondly, the spatial impact of zooplankton on pelagic nitrogen cycling was 

demonstrated through comparing their excretion δ15NH4
+ to water δ15NH4

+ at three 

depths (epilimnion, DCM and hypolimnion). Thirdly, δ15NH4
+, POM –δ15N and 

NO3
- –δ15N & δ18O data over an annual mixing cycle demonstrated seasonal 

patterns in CNR contribution. Spatially, 15N-depleted NH4
+ values (commonly < -

10.0 ‰) and strong correlation with zooplankton excretion (R2 = 0.91) suggested 

substantial N supply from CNR at the DCM. Temporally, the CNR effect on 

δ15NO3
- was greatest during late stratification when the lake was net-heterotrophic. 

These results demonstrate that food web dynamics can regulate nitrogen cycling in 

a large oligotrophic lake.  

4.2 Introduction 

The role of consumer nutrient recycling (CNR) in nutrient cycles is receiving 

increasing attention (Vanni et al. 2013; Allgeier et al. 2017; Wing et al. 2017). CNR 

describes the dietary assimilation and excretion of organic nutrients by 
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heterotrophic consumers (herein referred to as consumers) and consists of in situ 

recycling (primarily by single celled and smaller bodied consumers) and nutrient 

translocation (primarily by large-bodied mobile consumers (Vanni et al. 2013; 

Allgeier et al. 2017). It can enhance primary productivity by translocating nutrients 

between habitats or by retaining nutrients within an otherwise open system. For 

example, benthivorous fish translocate nutrients from the bottom sediments to the 

water column (Vanni et al. 2006), while zooplankton metabolize organic matter that 

would otherwise sink out of the euphotic zone (Bruce et al. 2006; Higgins et al. 

2014). CNR may enhance primary production in oligotrophic lakes to a greater 

extent than in eutrophic lakes, as oligotrophic lakes typically have higher ratios of 

biomass of consumers to primary producers (Carpenter et al. 1992; Cooke et al. 

2016). Changes in food web structure can also affect rates of CNR and pelagic 

productivity (Schindler et al. 1993; Higgins et al. 2014). For example, high biomass 

of invasive dreissenid mussels can re-route pelagic nutrients into the benthos 

(Conroy et al. 2005; Higgins et al. 2014) and has been linked to fishery collapses 

(Johannsson et al. 2000; Kao et al. 2015).  

The importance of CNR as a nutrient source in lakes will vary significantly spatially 

and temporally. Spatially, CNR may be relatively more important for 

phytoplankton in pelagic rather than littoral habitats (Carpenter et al. 1992; Vanni 

et al. 2013), due in part to enhanced nutrient supply in littoral habitats through 

interactions with highly microbially active bottom sediments (Figure 4-1). 

Temporally, the effects of CNR may be greatest in pelagic epilimnia of oligotrophic 

lakes during periods of stratification, when nutrient concentrations in euphotic 

surface waters are typically at an annual minimum (Figure 4-1). Climate warming 

is expected to prolong the duration and intensity of stratification in many lakes 

(Adrian et al. 2008; O’Reilly et al. 2015), potentially further magnifying the role of 

CNR during stratification periods (Kilham and Kilham 1992; Lewis 2010; Moss 

2012).  

Determining spatial and temporal variations in CNR has to date been constrained 

by methodological limitations. Some previous attempts to quantify the contribution 

of CNR to pelagic productivity have used consumer incubations to measure nutrient 

excretion rates (Schindler et al. 1992; Vanni et al. 2006; Sereda et al. 2008). This 

approach has three limitations: 1) a focus on selected species rather than the net 

effect of all food web interactions; 2) inability to account for spatio-temporal 
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mismatches between phytoplankton nutrient demand and consumer distributions 

(Vanni et al. 2013); and 3) lack of explicit consideration of food web structure in 

estimating nutrient translocations (Carpenter et al. 1992; Allgeier et al. 2017). 

Natural abundance δ15N stable isotope analyses can be used to trace the flows of N 

through an ecosystem (Middelburg 2014) and hold promise for nitrogen cycling 

studies. In particular, 15N depletion of dissolved inorganic (DIN) and primary 

producer N pools has been suggested as an indicator of significant N recycling 

(Robinson 2001; Somes et al. 2010). Two processes within the nitrogen cycle can 

lead to significant 15N depletion; consumer N excretion and nitrification (Robinson 

2001). The principles underpinning stable isotope analysis of consumer excretion 

are well established. When a consumer feeds on and metabolises dietary nutrients 

(for example, N), heavier isotopes (15N) are preferentially assimilated into tissue, 

while lighter, more reactive isotopes (14N) are preferentially metabolised and 

excreted back into the environment (Minagawa and Wada 1984) (Figure 4-1). 

Nitrification can result in an isotope effect of Δ15N = -20‰, leading to enrichment 

and depletion of the source ammonium and product nitrate pools, respectively 

(Figure 4-1). However, isotopic fractionation is dependent on open system 

dynamics (i.e., chemical reactions not going to completion). Hence, the degree of 

fractionation during nitrification is negatively related to demand for ammonium and 

positively related to ammonium concentration (Liu et al. 2013; Denk et al. 2017). 

In N deficient systems, where nitrification approximates closed system cycling, N 

excretion from heterotrophic metabolism becomes the primary process of 15N 

depletion. During periods of significant CNR, labile N pools with rapid turnover 

have more negative δ15N values than slow-turnover pools (Minagawa and Wada 

1984; Middelburg 2014). Isotopic effects of CNR may be most evident in 

oligotrophic systems (i.e., with low nitrogen availability) due to the increased 

importance of in situ recycling over external sources (Sigman et al. 2006; Xue et al. 

2009). In the tropical Atlantic Ocean, 15N-deplete nitrate has been used to indicate 

a significant contribution of zooplankton to CNR (Somes et al. 2010). In terrestrial 

ecosystems, 15N deplete values in fast-turnover foliage compared with relatively 

15N enriched slow-turnover soil organic matter have been used to indicate high rates 

of nitrogen recycling in Arctic tundra (Michelsen et al. 1996) and temperate rain 

forest ecosystems (Menge et al. 2011). Analogously, isotopically deplete dissolved 

δ56Fe values in the Southern Ocean have been attributed to high rates of recycling 

in these iron-limited waters (Wing et al. 2017).  
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The history of use of stable isotopes for N cycling in ecosystems originates from 

identifying sources of N (Anisfeld et al. 2007; Kendall et al. 2007; Bartrons et al. 

2010) and assuming that these sources have unique processes determining their 

δ15N values (Kendall et al. 2007; Sharp 2007). Ammonium and nitrate δ15N have 

shown limited success in differentiating N sources. However, dual nitrate δ15N and 

δ18O determination has proved useful (Kendall et al. 2007). Nitrate δ18O indicate 

δ18O values of water and ambient oxygen characteristic to the environmental 

conditions during nitrate formation (Kendall et al. 2007; Xue et al. 2009). Often, 

however, source signatures are affected by N attenuation processes (Xue et al. 2009; 

Nestler et al. 2011). For example, denitrification and phytoplankton uptake 

preferentially remove nitrate with isotopically light N and O, which results in a 

positive linear relationship between nitrate δ15N and δ18O values (Sigman et al. 

2005; Granger and Wankel 2016; Wells et al. 2016).  

Increasingly, N isotopes are being used to study processes occurring in the N cycle 

(Finlay et al. 2007; Xue et al. 2009). This change has occurred in step with 

analytical method developments, which now enable robust analyses of δ15N-NH4
+ 

values (Zhang et al. 2005) as well as dual nitrate δ15N and δ18O determination 

(Sigman et al. 2001; McIlvin and Altabet 2005) at concentrations as low as 2 mg N 

m-3. This ability to accurately determine low concentration nitrate and ammonium 

δ15N values enables differentiation of source effects (mixing) versus process effects 

(kinetic fractionation). Attenuation and mixing can be differentiated using the 

relationship between the isotope and the concentration of the atom according to the 

Keeling relationship (Keeling 1958; Sharp 2007; Bartrons et al. 2010). An linear 

inverse relationship between nitrate concentration and NO3
-–δ15N values (i.e., NO3

-

–δ15N = f([NO3
-]-1)) indicates end-member mixing. Conversely, a natural log linear 

relationship (i.e., NO3
-–δ15N = f(ln[NO3

-])) indicates kinetic fractionation (Sharp 

2007). This is because fractionation effects are reduced at lower nitrate 

concentrations whereas effects of mixing are amplified. In the context of 

investigating CNR, the presence of an end-member mixing relationship could be 

used to quantify relative contributions of CNR-derived nitrate to other sources such 

as catchment inputs.  



 

99 

  

Figure 4-1: Conceptual model of Lake Taupō nitrogen cycle including consumer nutrient recycling, 

hydrodynamic, biogeochemical processes and catchment inputs. Arrows represent fluxes of nitrogen.  

 

Based on previous studies, it can be suggest that nitrate δ18O values track the ratio 

of productivity to respiration, providing a proxy for lake physiological status. In 

lakes, δ18O of dissolved oxygen values has been used to estimate the ratio of 

production to respiration (P:R) (Kendall et al. 2007; Finlay et al. 2007; Wassenaar 

2012). Dissolved oxygen δ18O is transferred to nitrate δ18O during nitrification (Xue 

et al. 2009; Finlay et al. 2007). Oxygen in nitrate is derived from dissolved oxygen 

(DO) and ambient water at a 1:2 ratio (Finlay et al. 2007; Xue et al. 2009). Where 

δ18O-H2O values are relatively homogenous, variation in nitrate δ18O reflects that 

of dissolved oxygen (Finlay et al. 2007). In the absence of biological activity, 

dissolved oxygen δ18O is in equilibrium with the atmosphere (δ18O = 23.5 ‰) 

(Wassenaar 2012). Relatively enriched 18O indicates net ecosystem respiration and 

deplete 18O indicates net ecosystem production (Wassenaar 2012). Photosynthesis 

results in 18O depletion of DO as it generates oxygen derived from dissolved CO2 

which is in equilibrium with ambient water and has a much lower δ18O value (δ18O 

= -8 ± 7 ‰) than the atmosphere (Sharp 2007; Wassenaar 2012). Respiration results 

in 18O enrichment of the DO pool as isotopically light oxygen is preferentially 

assimilated during respiration. The isotopic discrimination factor (Δ18O) for 

ecosystem respiration is close to 1 ‰ (Wassenaar 2012). Dual isotope NO3
- (δ15N 
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and δ18O) analyses can provide important information on nitrogen cycling processes; 

δ15N values indicate loose vs. tight cycling (i.e., the intensity of CNR) and δ18O 

values indicate ecosystem metabolic state.  

Our study uses advances in stable isotope analytical techniques to quantify the 

spatial and temporal significance of CNR as a component of the N cycle over an 

annual stratification cycle in a large (616 km2) oligotrophic lake; Taupō, New 

Zealand. Analyses of δ15N from consumer tissue and excretion as well as 

ammonium, POM and nitrate within the water are used to investigate CNR fluxes 

that operate at different rates. We first tested the assumption that consumer 

excretion by several consumers results in 15N depletion of ammonium. Second, we 

used relationships between δ15N values of zooplankton excretion and ambient water 

ammonium to determine the contribution of zooplankton excretion to CNR. Finally, 

we examined the effect of CNR on δ15N values relative to transport and mixing 

processes in Lake Taupō. These three components enabled us to test the hypothesis 

that CNR is important to nitrogen cycling and highly spatially while being 

temporally variable in a large oligotrophic lake.  

4.3  Methods 

4.3.1 Study area  

Lake Taupō, in the central North Island of New Zealand, is characteristic of other 

large lakes globally. It is oligotrophic, monomictic, and has a small ratio of littoral 

relative to pelagic habitat. Lake Taupō formed in a rhyolitic caldera that was last 

active around 232 AD (Hogg et al. 2012), with a single deep basin. The Waikato 

River drains to the north and is the sole surface discharge. The hypolimnion has a 

stable temperature of approximately 11.5 °C year-round, while the epilimnion 

fluctuates between ~11.5 °C during winter mixing and up to 20 – 25 °C during 

summer mixing (Vincent 1983). Primary production in Lake Taupō has been 

demonstrated to be predominantly N-limited (White and Payne 1977; Vincent 1983) 

and the lake is one of only a few globally where management is focused solely on 

catchment N controls (Schindler et al. 2016). Catchment surface water inflows 

contribute 82 % of the approximately 1200 t annual N budget (Vant 2013). 

Atmospheric wet deposition accounts for approximately 17 % of the N load while 

septic tanks and geothermal inputs account for the remainder (Hamilton and Wilkin 

2005; Gibbs and Vant 2006). The annual mean Secchi depth has been relatively 

stable at around 15 m over the last decade and commonly exceeds 18 m during 
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summer stratification. As a result of a combination of mild winters, high water 

clarity and seasonally elevated surface-water nutrient concentrations, Lake Taupō 

has a winter phytoplankton productivity maximum which is dominated by diatoms 

(Vincent 1983). The summer phytoplankton assemblage is characterised by a deep 

chlorophyll maximum (DCM) at 40 – 60 m depth, which has a similar diatom 

community to that observed through the water column during winter (Hamilton et 

al. 2010). Cyanobacteria (e.g., Dolichospermum sp.) and chlorophytes (e.g., 

Botryococcus sp.) occur frequently in the surface waters during summer 

stratification. Littoral primary production is dominated by benthic diatomaceous 

mats to 40 m depth. Invasive macrophyte beds are present sporadically around 5-

18 m depth (Howard-Williams and Davies 1988; Hawes and Smith 1994).  

The fauna documented in Lake Taupō are typical of oligotrophic New Zealand lakes 

and are functionally typical of large oligotrophic lakes globally (Rowe and 

Schallenberg 2004). A detailed description of the food web is given in Stewart et 

al. (2017). Nutrient excretion incubations were performed on four consumer groups: 

common smelt, common bully, pelagic zooplankton grazers and freshwater mussels. 

These consumers represent primary and secondary consumers with comparable 

diets from both littoral and pelagic habitats (Stewart et al. 2017).  Common smelt 

are a pelagic zooplanktivorous fish. Smelt grow to 70 mm (fork-length) in a year, 

after which the majority of the population die post-spawning (Ward et al. 2005). 

Common bullies are a littoral benthivorous fish preying on benthic 

macroinvertebrates (Stewart et al. 2017). Bullies grow up to 120 mm and are the 

most numerous littoral fish in most oligotrophic New Zealand lakes (Rowe 2003).  

The zooplankton community in Lake Taupō is dominated by Crustacea and consists 

of the calanoid copepod Boeckella propinqua, and the cladocerans Ceriodaphnia 

dubia and Bosmina meridionalis (Forsyth and McCallum 1980; James 1987) as well 

as the North American cladoceran Daphnia galeata, which was first identified in 

the lake in the early 2000s (Duggan et al. 2006). Zooplankton biomass typically 

peaks in late spring, a three to four month lag behind winter peak chlorophyll 

concentrations (Stewart et al. 2017). Freshwater mussels feed through a 

combination of filter feeding phytoplankton and foraging benthic organic 

particulates using their spatulate foot (Cyr et al. 2017). Freshwater mussels occupy 

littoral substrate between 2 m and 40 m depth in Lake Taupō (James 1985).  
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4.3.2 Sample collection  

Sampling was carried out for four distinct lake zones, littoral, surface, 

metalimnetic/DCM and hypolimnetic water, (Figure 4-1) six times between 

September 2014 and August 2015. Three deep-water pelagic sites and six littoral 

sites were used as true replicates (Figure 4-2). Pelagic sites varied in depth from 

100 to 150 m. Littoral sites included 200 to 600 m lengths of shoreline within which 

a specific sampling site was randomly selected by assigning the southern/western 

end of the shore a value of zero and the northern/eastern end a value of one, and 

then estimating the position along the shore that aligned with a randomly generated 

value between 0 and 1. Water samples were taken at each site bi-monthly between 

September 2014 and August 2015. Consumer δ15N nutrient excretion incubations 

were done with zooplankton in February, June and August 2014, freshwater 

mussels in February 2014, and smelt and bully in February, April, June and August 

2015.  

 

Figure 4-2: Bathymetric map of Lake Taupō showing the three pelagic sampling sites (crossed circles) and six 

littoral sampling sites (triangles) used in this study.  

 

4.3.3 Excretion incubation experiments.  

All excretion experiments were conducted in the field immediately following 

sample collection. Zooplankton samples were collected by hauling a 90 μm mesh 

net of 25 cm diameter through the length of the water column. This mesh was 

chosen because the majority of zooplankton species in the lake are crustaceans >100 



 

103 

μm in length (James 1987), and the coarse mesh reduced accidental collection of 

phytoplankton. Mussels were collected by snorkelling within a 15 m radius to 5 m 

depth. Up to 10 individuals were collected. Beach seine nets were used to catch 

smelt and bullies. The seine net was 5 m long by 1.5 m high, and was dragged for 

20 m along the shoreline in 0.4 – 1.7 m water depth. If <2 smelt or bullies were 

caught at a site, the net was dragged a second time, for 50 m.  

Consumers were kept in a bath of ambient lake water within an insulated, dark box 

until the start of the excretion experiment. The consumers were then placed in 

containers of reverse-osmosis (RO) filtered water. RO water was used in all cases 

rather than lake water in order to prevent bias when comparing δ15N–NH4
+ values 

from the collected water sample to those excreted by consumers. For zooplankton 

samples, net contents were emptied into a 100 μm sieve to remove lake water, then 

rinsed in a jar containing 150 ml of RO filtered water. Three – ten mussels were 

lightly scrubbed with a cotton cloth and placed upright in 0.5 – 1.0 L of RO filtered 

water, depending on the number of individuals collected. Smelt and bullies were 

immediately identified from the seine net sample and three – fifteen individuals 

were rapidly transferred into 1 L of RO filtered water. Where <5 individuals were 

caught at a site, the incubation water was reduced to 500 ml to allow adequate 

sample concentration for subsequent analyses. 

After 30 minutes of the consumer excretion incubations, a filtered water sample 

was taken. The water sample was split into two sub-samples; one to determine 

nutrient concentrations and the other for δ15N–NH4
+ analysis. Samples for δ15N 

analysis were preserved in the field by adding 1 % by volume of 10 mM HCl 

solution containing 25 μM of sulfanilic acid to reduce pH to < 4 and prevent 

microbial transformation while the sulfanilic acid removed nitrite from the sample. 

Nitrite has previously been demonstrated to interfere with δ15N–NH4
+ and NO3

-–

δ15N and δ18O analyses (Granger and Sigman 2009).  

Consumers used in the incubations were euthanized and stored in NaCl brine 

solution for subsequent tissue δ15N analysis. Upon return to the laboratory, 

zooplankton samples were rinsed with RO-filtered water to remove NaCl by 

centrifuging and decanting five times. Zooplankton were examined under a 

dissection microscope (10X magnification) to remove non-zooplankton material. 

For mussels, samples were taken from the foot. Samples for smelt >15 mm and 

bullies >15 mm had their head and guts removed while smelt and bullies ≤15 mm 
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were analysed in their entirety. Samples were then rinsed to remove salt. Benthic 

invertebrates were removed from sediment samples in the laboratory and rinsed. 

All samples for stable isotope analysis were stored in 1.5 ml Eppendorf snap-lock 

tubes and were oven dried at 48 °C for >48 h. Samples were homogenised for stable 

isotope analysis. 

4.3.4  Water chemistry sampling 

Littoral water chemistry samples were collected from the 1-m depth contour at each 

site approximately 20 cm below the water surface. Pelagic water chemistry samples 

were collected from three depths; surface, DCM and hypolimnion, from each site. 

Pelagic sampling used a vertically positioned 5 L Van Dorn water sampler. Surface 

and hypolimnion samples were collected by lowering the Van Dorn sampler to 0.5 

m below the surface and approximately 2 m above the bottom, respectively, at each 

site. The depth for DCM sampling was determined by first recording a vertical 

profile with an RBR XR620f Conductivity-Temperature-Depth profiling system 

fitted with a chlorophyll fluorometer (Seapoint Sensors Inc., New Hampshire). The 

vertical chlorophyll fluorescence profile was immediately inspected and the depth 

of maximum chlorophyll fluorescence was taken as the DCM sample collection 

depth. When no DCM was present (June and August sampling), mid-water column 

samples were collected from 40 m depth to standardise sampling. 

 Water chemistry samples were collected for determination of total nitrogen, total 

phosphorus (TN and TP respectively), nitrate, ammonium and phosphate 

concentrations as well as stable isotope values of NO3
-–δ15N and δ18O, δ15N–NH4

+  

and POM –δ15N. Sample containers were rinsed in triplicate with filtered sample 

water prior to filling. Water samples, excluding aliquots taken for TN and TP, were 

filtered through pre-ashed and weighed 0.45 μm Whatman GF/C filters. The filter 

papers were retained after sufficient sample water was passed through for 

determination of POM–δ15N. Upon return to the laboratory, POM filters were oven 

dried at 48 °C for >48 h, weighed, then stored for stable isotope determination. 

Nitrate–δ15N and δ18O and δ15N–NH4
+ samples were preserved with HCl-sulfanilic 

acid solution to remove nitrite while all other samples were stored on ice in the dark 

until return to the laboratory.  

4.3.5  Nutrient concentration determination 

Dissolved nutrients (NH4
+, NO2

-, NO3
- and PO4

3-) were measured at the University 

of Waikato with an Aquakem 200 discrete analyser (Thermo Fisher, Scoresby, 
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Australia) using standard colorimetric methods (APHA, 1998). Limits of detection 

were 0.001 mg L-1 for NO2
--N and NO3

--N, 0.002 mg L-1 for NH4
+-N and 0.001 mg 

L-1 for PO4
3--P. Total nitrogen (TN) and total phosphorus (TP) concentrations were 

determined through alkaline persulphate digestion (APHA, 1998) of an unfiltered 

sample and subsequent colorimetric analysis for NO3
- and PO4

 3-, respectively, 

using a Lachat QuickChem flow injection analyser (Zellweger Analytics Inc.) 

Chlorophyll a concentrations were analysed at NIWA (Hamilton) using acetone 

pigment extraction and spectrofluorometric measurement as described by Verburg 

and Albert (2016). 

4.3.6 Stable isotope analyses 

Organic sample δ15N analysis. Consumer tissue samples were analysed at the 

Waikato Stable Isotope Unit (University of Waikato) by combustion using a Dumas 

Elemental Analyser (Europa Scientific ANCA-SL) interfaced to an isotope mass 

spectrometer (Europa Scientific 20-20 Stable Isotope Analyser, Europa Scientific 

Ltd, Crewe, U.K.).  POM samples were analysed at the GNS Science National 

Isotope Centre (Wellington) by the same procedure on a Eurovector elemental 

analyser coupled to an Isoprime mass spectrometer (GV Instruments Ltd, UK). All 

results were normalized to an internal leucine standard (themselves calibrated to 

international standards USGS 25 and USGS26). The analytical precision for δ15N 

is 0.3 ‰ and 0.5 ‰ for the GNS and University of Waikato laboratories, 

respectively.  

δ15N–NH4
+ analysis. Analyses were conducted at the GNS Science National Isotope 

Centre (Wellington) using the hypobromate oxidation-azide reduction method 

(Zhang et al 2007). Briefly, samples were initially injected with a hypobromate 

solution to quantitatively oxidise ammonium to nitrite. Arsenate was then added to 

remove residual hypobromate from the sample. A sodium azide – acetic acid buffer 

(2M) solution then quantitatively converted sample nitrite into nitrous oxide by 

injection into a septum-capped sample vial. This reaction was terminated after 30 

minutes by injecting a 6M NaOH solution. The NaOH also scrubbed from the 

sample vial any ambient CO2 which can interfere with N2O stable isotopic 

determinations. Sample nitrous oxide was then removed from the sample vial using 

a purge and trap system (pre-concentrator, Isoprime) after which the sample was 

analysed by continuous flow mass spectrometry (GV Instruments Ltd, UK). All 

samples were measured with a comparable concentration range of standards and 
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blanks. Sample δ15N values were corrected against four ammonium standards; 

IAEA-N1, IAEA-N2, USGS 25 and USGS 26.  

NO3
-–δ15N & δ18O analysis. All analyses were conducted at the GNS Science 

National Isotope Centre using the two-step cadmium and azide reduction method 

(McIlvin and Altabet 2005). In brief, samples were diluted where necessary, to 

achieve a concentration of 25 μM nitrate at pH 7. NaCl was added to obtain a 2 M 

concentration. pH was controlled by adding MgO to buffer the preservation acid. 

Acid-washed spongy cadmium was then added to each sample and placed on a 

shaker table overnight to allow complete conversion of nitrate to nitrite. The next 

day samples were further diluted, where necessary, to achieve a final concentration 

of 1 μM nitrite solution in a septum-capped vial. Sample δ15N and δ18O values 

analysed by continuous flow mass spectrometry were corrected using four nitrate 

standards; the international standards USGS 34, USGS 32 and IAEA-KNO3 as well 

as an internal KNO3 standard.  

Correction of low-concentration samples. Samples with concentrations <1.4 mM 

m-3 NH4
+-N or NO3

--N had a correction applied. An inverse relationship between 

δ15N values and these analyte concentrations indicated increasing interference by 

N2O as the sample concentration decreased. Background N2O (± SE) in deionised 

water blanks had stable concentrations (150 ± 0.1 μM N m-3) and δ15N values (-3.3 

± 0.09 ‰). The contributions of background N2O to the sample δ15N value was 

therefore able to be corrected using a two-point concentration dependent mixing 

model. The true sample δ15N value was determined using the equation: 

  𝛿15𝑁𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 =  𝜌𝐵(𝛿15𝑁𝐵𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑) +  𝜌𝑆(𝛿15𝑁𝑆𝑎𝑚𝑝𝑙𝑒) 

where ρB and ρS are the proportionate contributions of background N2O and true 

sample N2O to the observed sample yield, respectively. The value of ρB was 

calculated using: 

𝜌𝐵 =  
𝑃𝑒𝑎𝑘 ℎ𝑒𝑖𝑔ℎ𝑡𝑏𝑙𝑎𝑛𝑘

𝑃𝑒𝑎𝑘 ℎ𝑒𝑖𝑔ℎ𝑡𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑠𝑎𝑚𝑝𝑙𝑒
 

where peak height is the N2O yield from a distilled water blank and from the sample, 

measured by mass spectrometry. ρS is determined as 1- ρB. For ρB > 0.5, sample 

values were discarded.  
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4.3.7 Data analysis 

Statistical analyses were performed in R (version 3.3.2; R core team 2015), using 

the base package linear model (lm) function. Type II sums of squares were used in 

all analyses due to the unbalanced study design and co-varying predictor variables 

(Crawley 2007). 

Excretion δ15NH4
+ relationships – trophic discrimination factor between consumer 

tissue and excretion (Δ15NTDF) was determined as:  

∆15𝑁𝑇𝐷𝐹 =  𝛿15𝑁𝐸𝑥𝑐𝑟𝑒𝑡𝑖𝑜𝑛 −  𝛿15𝑁𝑇𝑖𝑠𝑠𝑢𝑒 

for excretion values paired with mean consumer tissue values from each incubation. 

Factorial analysis was used to determine species and sampling month effects on 

tissue-excretion trophic discrimination. Regression analysis was used to examine 

relationships between zooplankton excretion δ15NH4
+ and water δ15NH4

+ values 

from surface water, DCM and hypolimnion samples at sampling sites. Models to 

determine the relationship between zooplankton excretion δ15NH4
+ and water δ15N–

NH4
+ values were run for all three pelagic sites and with Site B samples excluded. 

The effect of Site B samples was examined because it is within 5 km of the two 

largest inflows, the Tongariro River, and the Tokaanu Power Scheme tailrace 

(Figure 4-2). Combined, these two inflows account for over 80 % of the total annual 

catchment input and approximately 38 % of the annual nitrogen load (Vant 2013). 

These inflows, at varying times of the year, can enter the lake as plunging 

discharges, surface plumes or mid-water column jets (Spigel et al. 2005).  

NO3
- isotopes – NO3

-–δ18O values were used as a proxy for in situ production: 

respiration (P:R) ratios. Lake Taupō water had a spatially and temporally consistent 

δ18O value (δ18O–H2O = -5.2 ± 0.1 ‰) throughout the study period (Data appendix 

1). Given the intra-annual consistency of δ18O–H2O values, variation in δ18O–NO3
- 

reflects δ18O–DO values, hence P:R. Observed δ18O–NO3
- data were compared 

against expected values using the isotopic nitrification equation: 

𝑁𝑂3
− − 𝛿18𝑂 =  

2 (𝛿18𝑂𝑊𝑎𝑡𝑒𝑟)

3
+  

𝛿18𝑂𝐴𝑡𝑚𝑜𝑠𝑝ℎ𝑒𝑟𝑒

3
+  𝜀𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛  

where δ18OWater  = -5.2 ‰, δ18OAtmosphere  = 23.5  ‰ (Finlay et al. 2007) and ε diffusion 

is the fractionation effect on dissolved oxygen through diffusion into water (~1 ‰ 

– Wassenaar 2012). Using the data for Lake Taupō with the equation above, the 

expected δ18O–NO3
- = 4.4 ‰. Observed nitrate with δ18O values greater than and 
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less than this value were considered indicative of net heterotrophy and autotrophy, 

respectively. 

Keeling relationships were used to examine the underlying mechanisms associated 

with linear relationships between NO3
-–δ15N and δ18O values. Existence of a linear 

relationship between nitrate δ15N and ([NO3
-])-1 is used to infer end-member mixing, 

and a positive linear relationship between nitrate δ15N and ln([NO3
-]) is used to infer 

kinetic fractionation processes.  

4.4 Results 

4.4.1 Validation of trophic fractionation from excretion 

Mean consumer nutrient excretion δ15N–NH4
+ values across all four sampling 

months (± 95 % CI) were 1.2 (4.4) ‰, -0.6 (4.1) ‰, -1.2 (0.9) ‰ and 1.0 (6.1) ‰ 

for smelt, bullies, mussels and zooplankton, respectively (Figure 4-3). The average 

Δ15NTDF for all consumer incubations over the study period was -5.6 ± 2.5 ‰. 

Significant differences between month were observed in Δ15NTDF values (Fig. 3), 

with stronger (i.e., more negative) Δ15NTDF in June than February and April (P < 

0.01). No significant difference (P = 0.12) was observed between bullies (-7.5 ± 

4.1 ‰), smelt (-5.7 ± 4.6 ‰), mussels (-4.8 ± 1.1 ‰), and zooplankton (-0.7 ± 

5.7 ‰), respectively (Figure 4-3).   
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Figure 4-3: Consumer tissue-excretion trophic discrimination for four consumers. Error bars represent 95 % 

confidence interval. a) Mean δ15N values for consumer excretion, tissue and the discrimination factor (Δ15N) 

between the two. b) Trophic discrimination factor Δ15N as a mean for each of the four sample months.  

 

Water-excretion δ15NH4
+ relationships 

Zooplankton excretion δ15N–NH4
+ was significantly related to δ15N–NH4

+ in the 

DCM samples:  

𝑊𝑎𝑡𝑒𝑟 𝛿15𝑁−𝑁𝐻4
+ = 0.81 ×  𝑍𝑜𝑜𝑝𝑙𝑎𝑛𝑘𝑡𝑜𝑛 𝑒𝑥𝑐𝑟𝑒𝑡𝑖𝑜𝑛 𝛿15𝑁 − 6.1 (R2 = 0.58, 

P > 0.01) (Figure 4-4). 

No significant relationships (P > 0.05) were observed between zooplankton 

excretion δ15N–NH4
+ and surface or hypolimnion water values (Figure 4-4). DCM 

water δ15N–NH4
+ values were slightly below the 1:1 line for the δ15N–NH4

+water – 

excretion relationship, whereas surface and hypolimnion water δ15N–NH4
+ values 

varied about the 1:1 line (Figure 4-4). The relationship improved with Site B 

samples excluded: 

𝑊𝑎𝑡𝑒𝑟 𝛿15𝑁 − 𝑁𝐻4
+ = 0.91 ×  𝑍𝑜𝑜𝑝𝑙𝑎𝑛𝑘𝑡𝑜𝑛 𝑒𝑥𝑐𝑟𝑒𝑡𝑖𝑜𝑛 𝛿15𝑁−𝑁𝐻4

+ − 2.7 (R2 

= 0.91, P = 0.015).  

Excluding Site B data from the relationships between water and excretion δ15N–

NH4
+values for surface waters resulted in data points falling above the 1:1 line, 
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whereas exclusion of Site B had no discernible influence on the relationship for 

hypolimnetic water samples. Linear models indicated that the effect of sampling 

site (i.e. Site B) was greater within water δ15N–NH4
+ values than within 

zooplankton excretion δ15N–NH4
+. Variance in water δ15N–NH4

+ values explained 

by sampling site was 23 %, 73 % and 41 % for DCM, surface and hypolimnion 

water respectively. Sampling site explained only 13 % of the total variance of 

zooplankton excretion δ15N–NH4
+ values.  

 

Figure 4-4: δ15NH4
+ for zooplankton excretion and water samples from the a) surface water, b) DCM and c) 

hypolimnion. Dashed line represents the 1:1 line.  
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4.4.2 Temporal patterns in Chl-a, POM –δ15N, δ15N–NH4
+, and NO3

-–δ15N & 

δ18O values across lake zones 

Surface water Chl-a concentrations were highest in September (2.4 mg m-3) and 

lowest in December (0.4 mg m-3). Chl-a was highest during winter mixing, when 

concentrations were largely homogeneous throughout the water column, and lowest 

during summer stratification when it was concentrated as a metalimnetic deep 

chlorophyll maximum (Figure 4-5).  

 

Figure 4-5: Depth distributions of chlorophyll a fluorescence (relative fluorescence units – RFU) from Lake 

Taupō at Site A between July 2014 and August 2015.  

 

POM–δ15N values from the four lake zones (surface, DCM, bottom and littoral 

water) were similar in the near-mixed/mixed periods of June and August (mean = 

3.1 ± 0.7 ‰). From the onset of thermal stratification in September, POM–δ15N 

values for surface, littoral and DCM waters became increasingly 15N deplete with 

large 95 % confidence intervals (Figure 4-6). By February POM–δ15N was strongly 

15N deplete for surface and littoral samples (-4.9 ± 4.0 ‰ and -9.6 ± 5.8 ‰), while 

bottom-water POM–δ15N had become slightly more enriched (3.4 ± 1.2 ‰).  POM–

δ15N values from each of the lake zones (surface, DCM, bottom and littoral) tended 

to converge again in June just prior to the onset of mixing. The C/N molar ratios in 

POM ranged from 6.1 to 35.0 over all lake zones. Ratios for the majority of these 

samples (61 %) were between 11.0 and 12.5, the reported range for freshwater 

phytoplankton. These samples also displayed a wide range of δ15N values, -18.0 to 

+6 ‰) (Figure 4-7).  

Across all N pools, δ15N varied most widely for NH4
+ (Figure 4-6). The range of 

δ15N for NH4
+ was 94.4 ‰ (-29.1 – 65.3 ‰) compared to 10.3 ‰ and 24 ‰ for 
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nitrate and POM, respectively. The variance in δ15N–NH4
+ values was particularly 

high in the hypolimnion (44.3 ‰) in August. δ15N–NH4
+ values were most negative 

for water samples from the surface (-9.4 ± 14.7 ‰) and hypolimnion (-12.9 ± 7.9 ‰) 

in February, for DCM samples (-7.0 ± 3.0 ‰) in August and September and for 

littoral samples in September (-10.4 ± 4.1 ‰) (Table 4-1). Values were highest for 

water samples from the surface (10.3 ± 8.2 ‰) in June, the DCM (5.7 ± 5.4 ‰) in 

December, the littoral (9.3 ± 9.3 ‰) in June and the hypolimnion (28.9 ± 19.4 ‰) 

in December. Temporal patterns within individual sites for δ15N–NH4
+ and δ15N–

NO3
- generally showed positive covariation (Supplementary Figure 4-10). The 

exceptions, periods when ammonium became 15N enriched and nitrate 15N deplete, 

were between February and April in littoral sites ‘Kinloch’ and ‘Stump’ and 

December to February in the surface water at pelagic Site C. 

 

 

Figure 4-6: Mean δ15N of water samples from the surface, DCM, littoral and hypolimnion for a) POM, b) 

ammonium and c) nitrate over the sampling months during 2014-2015.  
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δ15N–NO3
- values displayed a similar pattern to those of δ15N–POM with generally 

highest values during winter mixing and lowest around the end of summer. Samples 

had similar δ15N–NO3
- values across zones during winter mixing (Figure 4-6). 

Samples from the surface and DCM became 15N deplete relative to the hypolimnion 

during summer stratification. The difference between surface and hypolimnion 

NO3
-–δ15N values was greatest during February stratification. δ15N–NO3

- varied 

less with season in the hypolimnion (from 1.0 ± 0.4 ‰ in September 2014 to 5.8 ± 

1.0 ‰ in August 2015) compared with surface water (from -1.1 ± 1.0 ‰ in February 

2014 to 7.0 ± 1.3 ‰ in August 2015) and DCM (from -1.1 ± 1.0 ‰ in April 2014 

and 6.3 ± 2.2 ‰ in June 2015).  

 

Figure 4-7: C/N molar ratio versus δ15N of all POM samples (surface, DCM, hypolimnion and littoral water). 

Horizontal lines depict the 25th percentile, median and 75th percentile values for POM – δ15N.  

 

δ18O–NO3
- from surface and DCM waters was enriched (i.e., heterotrophic) during 

summer stratification and depleted (autotrophic) during winter mixing (Figure 4-8). 

δ18O–NO3
- enrichment was greatest during February at the DCM (10.2 ± 4.0 ‰) 

and at the surface (8.4 ± 3.8 ‰) in April, and depletion was greatest during August 

for both DCM (-3.1 ± 0.6 ‰) and surface water (-4.1 ± 0.9 ‰). Surface water δ18O–

NO3
- depletion (autotrophy) in August coincided with the highest Chl-a 

concentrations, and δ18O–NO3
- enrichment (heterotrophy) in summer coincided 

with low Chl-a concentrations (Figure 4-8). δ18O–NO3
- for samples from the littoral 
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zone varied between 3.0 ± 3.1 ‰ in April and 0.7 ± 0.7 ‰ in December. Littoral 

zone δ18O–NO3
- displayed a similar, albeit dampened, monthly pattern to that of 

surface and DCM samples. Littoral δ18O–NO3
- remained within the range of net 

autotrophy throughout the year.  

 

Figure 4-8: NO3
-–δ18O from surface, DCM and littoral samples. The red horizontal line indicates the NO3

-–

δ18O value for a productivity:respiration ratio = 1 (see methods section for details).  

 

When the δ18O & δ15N values in NO3
- were compared against each other in isotopic 

bi-space, overall δ18O was negatively related to δ15N–NO3
- (R2 = 0.52, P < 0.01): 

𝑁𝑂3
− − 𝛿18𝑂 =  −1.4 × 𝑛𝑖𝑡𝑟𝑎𝑡𝑒 𝛿15𝑁 + 4.8 (Figure 4-9).  

Mean catchment surface water nitrate input (δ15N = 4.2 ± 0.5 ‰ and δ18O = 1.6 ± 

0.4 ‰) fell on the mid-point of the lake NO3
- δ18O & δ15N line (Figure 4-9). Two 

keeling relationship was observed for δ15N–NO3
- values. δ15N–NO3

- values showed 

a significant negative linear relationship with the inverse of nitrate concentration 

for samples collected during February and April: 

𝑁𝑂3
− − 𝛿15𝑁 =  −0.17 ×

1

𝑁𝑂3
−−𝑁

+ 7.96 (R2 = 0.60, P < 0.01)  

where concentration is in mg l-1. This suggests that the negative linear relationship 

between δ18O & δ15N values in NO3
- was the result of two-point end-member 

mixing. The relationship for the remaining months was positive: 

𝑁𝑂3
− − 𝛿15𝑁 =  0.05 ×

1

𝑁𝑂3
−−𝑁

+ 2.22 (R2 = 0.53, P < 0.01) 
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The 15N-deplete nitrate end-member was associated with 18O enriched values (i.e., 

heterotrophy) while the 15N-enriched nitrate end-member was associated with 18O 

deplete values (autotrophy) (Figure 4-9).  

 

 

Figure 4-9: NO3
-–δ15N and δ18O data, separated by sampling month (colours) and lake zones (symbols). All 

data points are described by the solid black line: δ18O = -1.35 x δ15N + 4.76 (R2 = 0.52, p < 0.001).  

 

4.5 Discussion 

4.5.1 Overview  

The stable isotope data presented in this study of a large, oligotrophic lake, 

demonstrate that the importance of CNR to nutrient cycling is substantial but varies 

both spatially and temporally. On the balance of evidence, we argue that 15N 

depletion of dissolved nitrogen pools observed during stratification is due to CNR. 

This effect was most evident in δ15N values for nitrate, and to a lesser extent POM. 

The stratified period is characterised by low nitrogen availability and net 

heterotrophy.  Spatially, CNR contributions are likely to be greatest at the DCM 

where zooplankton grazing is focussed, as there is a significant linear relationship 

between δ15N-NH4
+ values of zooplankton excretion and the ambient water in this 
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layer. Stable isotope analysis provides evidence for CNR at three levels: 1) negative 

isotopic trophic discrimination during excretion; 2) positive relationships between 

zooplankton δ15N-NH4
+ of excretion and ambient water; and 3) seasonal changes in 

δ15N values of N pools. Implications of variations in CNR in the context of global 

environmental change are further discussed below. 

4.5.2 Patterns in trophic discrimination factors  

Trophic discrimination factors for consumer δ15N-NH4
+ excretion were negative 

over the four taxa studied in Lake Taupō (overall mean Δ15N = -5.6 ‰). This is in 

line with other studies demonstrating that Δ15NTDF values are consistent across all 

ecosystem consumers and CNR will universally result in excretion that is 15N 

depleted (Steffan et al. 2015). Importantly, consumer excretion is the only 

fractionation process that results in 15N depletion of ammonium (Robinson 2001; 

Denk et al. 2017). The Δ15NTDF of excretion has not previously been measured, but 

rather inferred by mass balance from consumers’ diet and tissue δ15N under 

controlled feeding experiments (Minagawa and Wada 1984; Somes et al. 2010). 

These earlier calculations suggest less 15N depletion of nitrogen excretion (-3.2 ‰) 

than observed in our study.  The discrepancy observed between the two methods is 

likely due to our results reflecting the combined effects of diet switching and diet 

quality. Lower Δ15NTDF is associated with poorer diet quality (Olive et al. 2003; 

Chikaraishi et al. 2015) while rapid diet switching (i.e., faster than tissue turnover 

rates) can result in a mismatch between diet (hence excretion) and tissue δ15N values 

(O’Reilly et al. 2002; Olive et al. 2003; Newsome et al. 2007; Mohan et al. 2016). 

In our study, Δ15NTDF values were significantly lower in June and August than in 

February and April and varied substantially within consumer groups. As is the case 

with oligotrophic lakes generally (McMeans et al. 2015), consumers in Lake Taupō 

rapidly switch their diet in response to seasonal changes in resource availability 

(Stewart et al.2017).  A combination of diet switching and changes in diet quality 

may therefore be responsible for variation in Δ15NTDF values.  

4.5.3 Patterns in δ15N-NH4
+   

Observed values of δ15N-NH4
+ suggest strong coupling between zooplankton 

excretion and ammonium generated, particularly within DCM and surface waters. 

Site B, however, was an exception. For all depths, Site B was an outlier in the δ15N-

NH4
+ relationship between zooplankton excretion and water. Sampling site 

accounted for a substantially greater percentage of the total variance of δ15N-NH4
+ 
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values at all three depths than zooplankton excretion did. This indicates that the 

anomalies at Site B are driven by water column processes rather than zooplankton 

excretion. Samples from Site B in the southern basin of the lake are most likely to 

be influenced by intrusions of two major river inflows (Spigel et al. 2005). These 

depths where inflows enter the lake can vary from the hypolimnion to the surface 

(Spigel et al. 2005). Stronger site effects (i.e., associated variance) in surface and 

DCM water δ15N-NH4
+ values than in the hypolimnion align with expected inflow 

intrusion being mostly into surface and metalimnetic waters. 

The relationship of δ15NH4
+ between zooplankton excretion and water was 

strongest for DCM samples from Sites A and C combined (R2 = 0.91) and fell close 

to the 1:1 line. By comparison, ambient water δ15N-NH4
+ for samples from surface 

and hypolimnion waters were higher and lower than zooplankton excretion δ15N-

NH4
+, respectively, indicating less of a role of zooplankton at these depths. 

Discrepancies in surface and hypolimnion waters may reflect either greater relative 

contributions of nitrogen excretion from higher (i.e., pelagic fish) or lower (i.e., 

microbial consumer) trophic levels to water δ15N-NH4
+ (Shostell and Bukaveckas 

2004) or nutrient source-sink dynamics within zooplankton excretion (Lampert 

1989; Baustain et al. 2014). Zooplankton excretion has been implicated as an 

important source of nutrients for phytoplankton growth (Elser et al. 1996; Spillman 

et al. 2000; Bruce et al. 2006). Our results indicate that CNR effects are depth 

dependent. There is reciprocal coupling between zooplankton and phytoplankton at 

the DCM in Lake Taupō but less so in surface and hypolimnion waters. While 

zooplankton typically utilise the entire water column (Jolly 1965; Baustain et al. 

2014), they tend to aggregate in the metalimnion of oligotrophic lakes due to higher 

food abundance (Winder et al. 2004). Our results highlight how biotic interactions 

spatially structure nutrient cycling processes in oligotrophic lakes.  

The relationships between δ15N-NH4
+ of zooplankton excretion and water from 

different zones did not translate to water δ15N-NH4
+ values being a strong indicator 

of whole-lake patterns of CNR through time. Water δ15N-NH4
+ values were highly 

variable between replicates from the same lake zone. Monthly mean water δ15N-

NH4
+ values showed a similar pattern to nitrate and POM δ15N (i.e., summer 

stratification accompanied pelagic surface water 15N depletion), but the high 

variance prevented conclusions being made about seasonal patterns in water δ15N-

NH4
+. Our results suggest that water δ15N-NH4

+ values likely respond to a number 
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of localised nitrogen cycling processes which, collectively at the ecosystem level, 

produce high variability. Warmer water temperatures, higher incident light and 

lower nutrient concentrations during stratified periods result in faster nitrogen 

cycling rates (Goldman et al. 1996; Kumar et al. 2008; Bratič et al. 2012). During 

these periods, the rate of ammonium depletion (e.g., via photosynthetic uptake and 

nitrification) commonly balances generation (consumer excretion). As a result, the 

ammonium present in the water is transient (Goldman et al. 1996; Kumar et al. 

2008). Under these conditions, nitrification and ammonium uptake, which remove 

ammonium, will display closed system dynamics (i.e., strongly supply-limited N 

transformation) and associated isotopic fractionation effects on δ15N-NH4
+ values. 

(e.g., 15N-NH4
+ enrichment) will be minimal (Bourbonnias et al. 2013; Liu et al. 

2013; Denk et al. 2017). This suggests that processes generating ammonium (i.e., 

CNR) are driving the observed deplete 15N-NH4
+ and 15N-NO3

- values during 

summer. Under oligotrophic conditions ammonium fluxes are highly isotopically 

heterogeneous, which likely reflects the spatial heterogeneity of recycling processes 

and potentially localised effects of fractionation during nitrification. Heterogeneous 

cycling processes are expected to confer resilience in nutrient cycles (Dong et al. 

2017; Farnsworth et al. 2017). The substantial heterogeneity of δ15N-NH4
+ 

documented in this study, if teased apart, could help identify critical rate-limiting 

processes and dynamics in N-cycling at a high resolution.    

4.5.4 Patterns in nitrate δ15N & δ18O 

 Nitrate δ15N & δ18O data indicated that Lake Taupō varied between two states over 

the year: heterotrophy with large contributions of CNR during stratification, and 

autotrophy during nitrogen replete mixing. Isotopically, the high-CNR, 

heterotrophic state was defined by high δ18O–NO3
- (10 ‰) and low δ15N–NO3

- (-

1.5 ‰) while the autotrophic nutrient replete state was characterised by low δ18O–

NO3
- (-4 ‰) and high δ15N–NO3

- (6 ‰). Enrichment and depletion of 18O in nitrate 

indicates heterotrophy and autotrophy, respectively (Wassenaar 2012). CNR 

depletes δ15N–NO3
-, while fractionation from phytoplankton uptake when nitrate is 

replete enriches 15N in the nitrate pool (Kendall et al. 2007; Xue et al. 2009). These 

two states of the lake represented isotopic end-members; nitrate –δ15N & δ18O 

values were spread along a negative gradient between these two states. The two 

distinct linear (Keeling) relationships were due to mixing between the two end-

member states. Catchment δ15N–NO3
- represented the common origin value for 

both of the seasonal keeling relationships. Similarly, nitrate–δ15N & δ18O values of 
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catchment inflows, the predominant external nitrate source, fell between the two 

end-member states along the mixing line. Isotopic fractionation associated with 

heterotrophic and autotrophic states drives these source nitrate–δ15N & δ18O values 

in different directions along the mixing line. Heterotrophy occurs during 

stratification as declining nutrient concentrations in the euphotic zone cause 

phytoplankton biomass to also decline, and ecosystem trophic level biomass 

pyramids tend to become inverted (Sommers et al. 2010; Stewart et al. 2017). The 

hypothesis that CNR contributions are greatest when consumer biomass is high and 

nutrient supply from other sources is low (Allgeier et al. 2017; Stewart et al. 2018), 

was supported by results from our study. Seasonal fluctuation in dissolved nutrient 

concentrations and phytoplankton biomass would be expected to be far greater in 

the absence of CNR (Lewis 2010). Greater temporal fluctuations in phytoplankton 

biomass have implications for food web stability (Li and Stevens 2017) and 

productivity (Yang et al. 2008), suggesting that CNR may provide an important 

feedback mechanism for maintaining resilience in aquatic food webs. 

4.5.5 Patterns in POM–δ15N 

POM–δ15N data suggest that high rates of CNR were associated with phytoplankton 

as opposed to detrital POM. POM that was deplete in 15N consistently had a C:N 

ratio ~11.5 which is a typical C:N ratio for freshwater phytoplankton (Hecky et al. 

1993). Conversely, detrital POM had variable C:N frequently C:N > 13 and up to 

35, with δ15N consistently > zero. Detrital POM δ15N values were similar to the 

annual mean for nitrate (δ15N = 1.2 ± 1.3 ‰) suggesting a close association with 

decomposition (i.e., slow N turnover). The occurrence of isotopic values indicative 

of high rates of CNR (i.e., 15N deplete) exclusively within phytoplankton-rich POM 

samples indicates that high rates of epilimnetic consumer nutrient recycling were 

disproportionately associated with phytoplankton uptake rather than detrital 

decomposition indicating tight nitrogen cycling. This concurs with current 

understanding that phytoplankton, or ‘green’, trophic channels are more responsive 

to changes in nutrient concentrations than detrital, or ‘brown’, trophic channels 

(Polis and Strong 1996; Blanchard et al. 2010; Zou et al. 2016).  

CNR was most important for phytoplankton during stratification. Both littoral and 

pelagic surface water POM were most 15N deplete during summer stratification 

(February-April) and coincided with the POM–δ15N values being most similar to 

δ15N-NH4
+ as opposed to δ15N–NO3

-. Conversely, during winter mixing, values of 
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POM–δ15N values were more similar to δ15N–NO3
-. This seasonal pattern in POM-

δ15N indicates that phytoplankton is primarily sustained by: a) recycled ammonium 

during the strongly nutrient deficient summer stratified period, and b) during winter 

mixing by hypolimnetic nitrate, which accumulates over the stratified period and is 

entrained through the water column. Ammonium uptake is critical for sustaining 

phytoplankton growth during stratification in oligotrophic lakes with low 

availability of inorganic N (Suttle and Harrison 1988; Kumar et al. 2008) and tight 

coupling within the nitrogen cycle (Goldman et al. 1996; Ptacnik 2010). Comparing 

ammonium uptake by phytoplankton during stratification alongside the coupling 

between zooplankton excretion and water δ15N-NH4
+ suggests that tight nitrogen 

recycling is influenced strongly by localised consumption and excretion by 

zooplankton in the metalimnion.  

4.5.6 Consumer interactions provide new perspectives on lake nutrient cycling  

CNR may have a positive feedback with phytoplankton abundance at the DCM 

during stratification. The depth of DCM in lakes is driven by interactions of 

physical conditions (light penetration, hypolimnetic nutrients, water density 

gradients; Hamilton et al. 2010; Leach et al. 2017) as well as zooplankton 

aggregation and excretion (Pannard et al. 2015). Zooplankton aggregate at the DCM 

due to relatively high food resource density (Winder et al. 2010), and their excretion 

becomes a localised nutrient source, producing a positive feedback on DCM 

phytoplankton growth. Evidence for such a positive feedback in Lake Taupō is 

provided firstly by the correlation between zooplankton excretion and water 

δ15NH4
+ values at the DCM, and secondly by the high contribution of phytoplankton 

to zooplankton diet at the DCM (Stewart et al. 2017). Biotic interactions exhibit 

stronger positive and negative feedbacks on spatial and temporal patterns in nutrient 

cycles than purely abiotic drivers (Carpenter et al. 1992; Levin 1999; Herren et al. 

2016; Dong et al. 2017). Such feedback mechanisms should be explicitly 

considered in lake nutrient management (Herren et al. 2016; Dong et al. 2017). 

Consumer interactions (i.e., food web dynamics) are not considered explicitly in 

lake nutrient management. On the basis of our results, however, food web dynamics 

should be taken into consideration in ecosystem management particularly in 

oligotrophic lakes.  
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4.5.7 Potential contributions from N-fixation  

N-fixation is a potentially seasonally important additional N source that was not 

explicitly considered in this study. Heterocystous Dolichospermum sp. 

(cyanobacteria) colonies become most abundant during late stratification when and 

surface water N:P are typically lowest (Verburg and Albert 2016). N fixation 

produces δ15N values of approximately 0 ‰ (Finlay et al. 2007; Somes et al. 2010). 

Surface-water POM–δ15N values were closest to 0 ‰ during peak Dolichospermum 

sp. abundance. Zooplankton have been shown to avoid grazing cyanobacteria 

(Boon et al. 1994; Burns 1998). When N-fixing cyanobacteria biomass is not grazed 

by zooplankton, it has been shown to sink, then accumulate and decompose within 

the hypolimnion (Scott and McCarthy 2010). In the context of Lake Taupō, while 

we are unable to make definitive statements in the absence of measured N-fixation 

rates, cyanobacteria-fixed N likely becomes available for other non-N-fixing 

phytoplankton uptake during winter mixing after mineralisation in the hypolimnion.  

4.5.8 Consumer nutrient recycling in the context of global environmental change 

 Variations in CNR have implications for the resilience of lakes to global 

environmental change. Given the similarities of food web structure (Stewart et al. 

2017), nutrient concentrations, and mixing regime between Lake Taupō and other 

large oligotrophic lakes globally, we expect that our findings can be applied to 

spatio-temporal patterns in CNR across multiple systems. Increased duration of 

stratified period is predicted to occur in response to climate change (Adrian et al. 

2008; Sahoo et al. 2016) and can result in reduced productivity (Verburg et al. 2003; 

O’Reilly et al. 2003; Verburg 2007). Previous research has alluded to CNR as a 

process which may partially offset this effect (Adrian et al. 2008; Lewis 2010). 

While CNR may dampen fluctuations in phytoplankton biomass between nutrient 

pulses (e.g., due to mixing events), our results suggest it does not affect production: 

respiration ratios. In other words, CNR cannot sustain primary production in the 

long-term but rather is a mechanism for alleviating periods of low nutrient supply. 

With increasing durations of stratification, CNR may partially offset declines in 

phytoplankton production for a period, after which the system approaches a 

threshold collapse (Farnsworth et al. 2017). The importance of CNR within lakes 

indicates that ecosystem processes typically considered outside of the scope of 

nutrient management should be explicitly considered for oligotrophic lakes.  
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4.5.9 Summary  

Mechanisms controlling nutrient cycling in oligotrophic lakes are distinct from 

those in eutrophic lakes. This study demonstrates that stable isotope analysis of 

nitrogen pools within a lake can be applied to investigate the significance of CNR 

in lake nutrient cycling.  CNR is an important factor in regulating and maintaining 

primary production in oligotrophic systems during periods of low nutrient 

availability. Catchment loads and mixing regime are the major determinants of 

productivity but CNR can have a critical role at specific periods of the year in large 

oligotrophic lakes. This may provide an important feedback between consumers 

and phytoplankton supporting consumers during ebbs between resource availability. 

The findings presented here support the growing call for integration of food web 

and nutrient management in large lakes. 
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4.8 Supplementary information 

Table 4-1: Standard deviations (‰) for δ15N-NH4
+, δ15N-POM, δ15N-NO3

- and δ18O-NO3
- samples from all four 

lake habitats throughout all six sampling months. Colour scale reflects relative variance within the sample set 

with red reflecting the highest standard deviations. 

Month Habitat n δ15N-NH4
+ δ15N-POM δ15N-NO3

- δ18O- NO3
- 

September Bottom 3 11.41 0.75 0.33 5.25 

December Bottom 3 17.13 4.01 0.24 0.86 

February Bottom 3 7.01 1.09 0.39 1.12 

April Bottom 3 1.45 1.22 0.74 0.14 

June Bottom 3 12.21 1.94 0.43 2.43 

August Bottom 3 39.12 1.51 0.87 0.33 

September DCM 3 9.21 11.00 0.52 3.34 

December DCM 3 0.45 1.18 0.14 0.74 

February DCM 3 7.19 4.09 0.75 3.49 

April DCM 3 4.75 6.29 0.95 0.76 

June DCM 3 4.80 1.51 1.97 0.96 

August DCM 3 2.68 0.45 0.66 0.83 

September Surface 3 13.50 2.61 1.35 4.66 

December Surface 3 2.92 7.25 0.93 0.91 
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February Surface 3 15.62 4.06 0.89 2.14 

April Surface 3 3.13 5.48 2.74 3.32 

June Surface 3 7.25 0.28 1.84 1.33 

August Surface 3 7.47 0.28 1.12 0.49 

September Littoral 5 8.06 9.19 0.48 2.03 

December Littoral 6 5.49 7.95 0.55 0.86 

February Littoral 6 3.69 5.80 2.23 3.17 

April Littoral 6 18.14 3.28 0.99 3.81 

June Littoral 6 11.63 1.48 1.12 1.88 

August Littoral 6 6.54 2.36 1.71 1.53 
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Figure 4-10 1: Time series of ammonium δ15N (solid line) and nitrate δ15N (dashed line) for individual sites 

across the six sampled months. Correlation coefficients (R) for temporal covariation between ammonium and 

nitrate δ15N are displayed for each site. Periods of potential nitrification (i.e., coupled 15N depletion of nitrate 

and enrichment of ammonium) are identified by grey blocks.  
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5. Chapter five 

Biological nitrogen recycling and 

translocation exceed physical transport fluxes 

in a large oligotrophic lake: A coupled mass 

balance and hydrodynamic model evaluation 

5.1 Abstract 

Nitrogen (N) supply within lakes is the sum of ‘new’ influxes and recycling of ‘old’ 

fluxes. Understanding the relative contributions of these two processes is an 

important consideration for nutrient management in lakes. Physical influxes of 

littoral N into pelagic waters are known to be both substantial and variable, but are 

seldom considered in isolation. A three-dimensional hydrodynamic model was used 

in this study to quantify littoral-pelagic exchanges of water over an annual cycle in 

Lake Taupō; a large (59 km3) warm monomictic, oligotrophic lake in North Island, 

New Zealand. Modelled littoral-pelagic exchanges and respective N concentrations, 

together with phytoplankton N uptake and other major N influxes were incorporated 

into the mass balance model. Calculated recycling rates were compared against 

nitrate, ammonium and POM δ15N values to test if 15N-depletion was related to high 

rates of consumer nutrient recycling. The model demonstrates that littoral-pelagic 

exchange acted as a net source of N to the pelagic surface waters throughout the 

year. However, during summer stratification (December and February), consumer 

excretion of littoral-derived N exceeded the physical transport influx. The mass 

balance model indicated that in situ recycling was the dominant flux (> 70%) 

throughout the year. Stable isotope data showed that much of the N recycling could 

be accounted for by phytoplankton excretion, related to the winter peak of biomass. 

By contrast, consumer recycling remained relatively consistent throughout the year. 

These results highlight the dominant role of biological interactions to recycle and 

transport nitrogen and drive phytoplankton production in lakes.  

5.2 Introduction 

Renewal of the dissolved inorganic nitrogen pool in lake ecosystems is due to two 

processes; influxes of allochthonous (‘new’) nitrogen and in situ recycling of 

organic (‘old’) nitrogen (Finlay et al., 2007; Allgeier et al., 2017). Understanding 

the relative contributions of these processes, and variations within each, is critical 
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for effective nutrient management (Carpenter et al., 2011; Schindler et al., 2016). 

Catchment land-management is most commonly used to attempt to achieve nitrogen 

concentration targets in lake pelagic waters (Hamilton et al., 2016) and the role of 

recycling in retaining N is rarely considered (Lewis and Wurtsbaugh, 2008). 

Recycling may be particularly important during periods of stratification when 

particulate nutrients settle out into the hypolimnion, leading to progressive nitrogen 

depletion (Kumar et al. 2008; Lewis, 2010). Nitrate, ammonium and POM δ15N 

values in pelagic surface waters can be used to estimate the relative contribution of 

recycling to the dissolved inorganic nitrogen (DIN) pool from consumer (bacteria 

through to top-predator) excretion (see Chapter 4). 

Influxes of new nitrogen can include: delivery of catchment N in riverine inflows 

(Abell and Hamilton, 2015), direct atmospheric deposition (Batrons et al., 2010), 

cyanobacteria N-fixation (Scott and McCarthy, 2010), translocation of nutrients in 

excretion by littoral feeding mobile consumers (Schostell and Bukavickas, 2004; 

Vanni et al., 2013); localised hypolimnetic upwelling events (Boehrer and Schultze, 

2008; Bocaniov et al., 2010), and physical exchange of littoral and pelagic water 

(Monismith et al., 1990; Boehrer and Schultze, 2008). Littoral-pelagic exchange 

has received less attention than other physical transport processes such as 

hypolimnetic upwelling as a source of new nitrogen (see Boehrer and Schultze, 

2008). However, littoral areas of lakes are typically highly productive environments 

which have higher DIN concentrations than pelagic waters (Hawes and Smith, 1994; 

Vadeboncoeur et al., 2003). Higher DIN concentrations in littoral waters are the 

result of multiple influxes of DIN, including in situ mineralisation (Brothers et al., 

2016), mixing with riverine inputs (Spigel et al., 2005) and hypolimnetic upwelling 

(MacIntyre et al. 2009; Corman et al. 2010). Physical exchanges, along with 

movement of mobile consumers, can transport DIN from littoral to surface pelagic 

waters. 

Littoral-pelagic exchange is controlled by water circulation patterns set up mostly 

by interactions of the prevailing wind field and the lake bed morphology (Rueda 

and MacIntyre, 2010), Coriolis effects (Csanady, 1977), riverine inflows (Spigel et 

al., 2005; Abell and Hamilton, 2015) and the internal wave field (Antenucci and 

Imberger, 2001). Quantifying littoral-pelagic exchanges of nitrogen will provide 

substantially improved understanding of how nitrogen enters and is cycled in the 

pelagic zone.  
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Three-dimensional (3-D) hydrodynamic models are a powerful tool to assist with 

understanding physical transport of water between areas of lake basins (Imberger 

et al., 2017). They can provide insights into littoral-pelagic water exchange, for 

example by labelling specific water volumes with inert tracers and quantifying the 

dilution of the tracers (Abell and Hamilton, 2015). When combined with DIN 

concentration data, 3-D models may allow littoral-pelagic exchange and 

hypolimnetic upwelling to be included in pelagic surface water nitrogen budgets. 

Combining this information with δ15N data has the potential to quantify the relative 

importance of, and temporal variations in, physical transport and recycling of DIN 

(Figure 5-1).  

This study applies a 3-D hydrodynamic model to Lake Taupō, a large (616 km2), 

deep (mean depth = 90 m), oligotrophic lake in the North Island of New Zealand. 

Inert tracers are used in model simulations to quantify littoral-pelagic water 

exchange during six sampling periods over an annual cycle. Fluxes of water are 

combined with DIN concentration data as well as published and modelled 

calculations of all important DIN influxes in order to develop a N mass-balance 

budget for the pelagic surface waters. The pelagic surface water N budget is then 

used to: 1) compare supply of DIN from physical transport and consumer 

translocation from littoral to pelagic surface waters throughout the annual cycle; 2) 

calculate the role of in situ recycling; 3) test for relationships between nitrogen 

recycling rates and δ15N of nitrate, ammonium and particulate organic matter (POM) 

δ15N data. These analyses support testing the hypothesis that after the onset of 

summer stratification, in situ recycling becomes the primary source of DIN for 

pelagic surface waters and that δ15N-DIN values correspondingly become 

progressively negative.  
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Figure 5-1: Conceptual representation of flows of N in a stratified lake and associated effects on δ15N values. 

Font size of 14N and 15N demonstrates the relative isotope enrichment associated with the respective processes.  

 

5.3 Methods 

5.3.1 Study site 

Lake Taupō is a large, deep (max. depth 160 m) caldera lake formed in 1257 CE 

(Hogg et al., 2011). The lake consists of a single basin and is characterised by a 

relatively small littoral area due to the steep shoreline (Figure 5-2). The mean 

shoreline gradient is 45° (Hawes and Smith, 1994). This steep gradient is partially 

due to the presence of vertically plunging cliffs along much of the western shoreline. 

The lake has a small natural catchment (3,487 km2) relative to the lake volume (59 

km3), resulting in a lake water residence time of 13.5 years prior to the 

commissioning of the Tongariro power scheme between 1973 and 1983. This 

scheme diverts an additional 1.3 km3 of water into the lake annually from 

neighbouring catchments and reduces the residence time to 10.5 years (Hamilton 

and Wilkins, 2005). Detailed descriptions of the ecology of Lake Taupō are 

provided in Stewart et al. (2017) and in Chapter 4. Briefly, Lake Taupō is a 

monomictic lake that, owing to high water clarity and temperate-subtropical 

location, has peak phytoplankton production during winter mixing when nutrient 

availability is greatest (Vincent 1983). During the remaining approximately ten 

months of stratification, when nutrient concentrations in the euphotic zone are 

progressively reduced, consumer excretion becomes a significant nutrient source 

(Chapter 4), at which time there is also a high degree of littoral-pelagic diet coupling 

(Stewart et al., 2017). 
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Figure 5-2: Bathymetric map of Lake Taupō showing the pelagic (circles) and littoral (triangles) sampling sites 

used in the study. Six inward-pointing arrows and one outward-pointing arrow show locations of the six gauged 

surface inflows and the surface outflow, respectively.  

 

5.3.2 Model setup 

The three-dimensional Aquatic Ecosystem Model (AEM3D – Hydronumerics, 

Victoria, Australia) was used to simulate hydrodynamics in Lake Taupō. The 

simulation period was 1 January 2014 to 18 October 2015. This period was chosen 

to coincide with a field sampling campaign between 10 September 2014 and 8 

August 2015. AEM3D is a hydrostatic model based on the unsteady, viscous 

Navier-Stokes equations for incompressible flow (Hodges and Dallimore, 2015). A 

comprehensive overview of the model is provided in Imberger et al. (2017). 

Simulation modules include surface thermodynamics, inflows and outflows, water 

temperature and density, direct precipitation and Coriolis forcing. In short, the 

modelling process involved the following steps: 1) lake bathymetry was discretised 

into a 2-D configuration of bed elevation, 2) meteorological and catchment inflow 

forcing data were compiled and formatted for model input at an hourly time step, 3) 

model calibration and validation was performed, 4) a conservative tracer was 

employed within the pelagic zone to simulate littoral-pelagic exchange in cells 

corresponding to the sampling sites, 5) simulations of littoral-pelagic exchange 
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rates derived from the tracer were compared with concentrations of ammonium 

(NH4
+-N), nitrate (NO3

--N), total nitrogen (TN), as well as POM, nitrate and 

ammonium δ15N data.   

Bathymetry configuration – The lake surface area was converted into a grid of cells 

in ArcGIS Version 10.5.1 (ESRI Redlands, CA, USA). A 2 m (or higher) horizontal 

resolution bathymetry map from Land Information New Zealand (data.linz.govt.nz 

accessed: July 2012) was digitised to provide an average depth for each cell. 

Individual cells had dimensions of x = 500 m, y = 500 m and z (vertical) = 0.5 to 

15 m. The vertical water column was divided into 35 layers of thickness 0.5 m at 

the surface, 3 m between 5 and 50 m depth, and then incrementally increasing up 

to 15 m at 120 m depth, below which the layer thickness was constant at 15 m. The 

variable thickness was chosen to enable higher resolution in the epilimnion and 

metalimnion layers.  

5.3.3 Environmental forcing data 

Meteorological information – Meteorological data were collected from two stations, 

both within 1 km of the lake shore, during the model period of September 2014 

until August 2015 (Figure 5-2). Mean hourly atmospheric pressure, recorded at the 

Taupō Airport weather station on the north-eastern shore, was obtained from the 

New Zealand MetService. Hourly measurements of air temperature, wind speed and 

direction, solar radiation and rainfall were collected from National Institute of 

Water and Atmosphere (NIWA) at their Turangi weather station, at the southern 

end of the lake (Figure 5-2). Daily cloud cover was estimated from the ratio of 

observed solar radiation to potential radiation at midday for each day. Potential 

solar radiation was derived using the Bird Clear-sky model (Bird and Hulstrom, 

1981). The installation of an autonomous monitoring buoy at Site A (Figure 5-2) in 

March 2015 provided in situ wind recordings for the centre of the lake from 13 

March 2015 to 30 April 2015. Lake shore and mid-lake wind speed measurements 

provided an indication of wind speed variability within the lake wind-field 

(Antenucci and Imberger, 2003). AEM3D uses a constant wind-field over a lake, 

and commonly applies an average wind-speed over the lake (Hodges & Dallimore, 

2015). Quartile regression between lake shore and mid-lake wind stations gave the 

following relationship of wind speed: 

 𝑈𝐵𝑢𝑜𝑦  = 2.2 𝑥 𝑈𝑇𝑢𝑟𝑎𝑛𝑔𝑖  



 

139 

where U is wind speed (m s-1) and subscripts represent the two locations. Wind 

speed was adjusted to the 10 m elevation used as input to the model following 

equations described in Verburg and Antenucci, (2010). Scaling factors of 1 and 2.2 

represented the minimum and maximum wind speeds within the Lake Taupō wind-

field. The appropriate scaling factor for the mean wind speed was determined 

through an iterative process by matching modelled and observed water column 

profiles. This resulted in a scaling factor of 1.5 being applied to lake-shore 

meteorological station data, to represent mean wind speed for the Lake Taupō wind-

field. 

Inflows –Discharge (Q) and water temperature for all second-order and greater 

surface inflows to the lake (35 inflows in total) as well as the single surface outflow, 

the Waikato River, were included as boundary condition forcing data. A summary 

of forcing data and sources is provided in Table 1. Eight of the 35 natural inflows 

(Table 5-1), the Waikato River and water diverted into Lake Taupō from 

neighbouring catchments through the Tongariro Power Scheme (Genesis, 2017) 

had mean hourly Q values for the entire sampling period. Values of Q for the 

Tongariro Power Scheme were derived from records of hydro-electric power 

generation (MW) while all other measured values of Q were derived from calibrated 

flow gauging managed by various organisations (Table 5-1). For the remainder of 

inflows, the Catchment Land-Use model for Environmental Sustainability (CLUES: 

Elliot et al., 2011), was used to determine mean annual Q based on catchment area 

as well as topographic and land cover information. Within the gauged catchments, 

discharge varies substantially throughout the year. Hence prescribing a mean annual 

Q to the majority of inflows would produce substantial error in the lake water 

balance at more highly resolved time scales. Mean hourly Q used as model input 

was assigned for catchments with modelled mean annual Q data by matching 

discharge to the hydrograph of the nearest-neighbour gauged stream of similar 

catchment area (± 20%), corrected for the difference in mean annual Q between the 

two inflows.  

Groundwater inputs – Groundwater inputs were assigned as the daily Q required to 

balance the water budget. Known terms within the water budget were the 35 surface 

inflows, the surface outflow, direct rainfall on the lake surface and evaporation from 

the lake surface. The residual of the water balance was calculated daily by fit of 

modelled and measured lake water level. The average of the previous seven days 
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was used for measured lake water level in order to dampen high-resolution surface 

oscillations and measurement error. The water balance residual yielded an annual 

mean Q of 13 ± 12.4 (SD) m3 s-1. This value represents the upper estimated ground 

water inputs of 5.36 to 13.8 m3 s-1 (Maxwell 2012). It should be noted that first 

order surface water inflows were not explicitly modelled as inputs and, hence, were 

also included in our groundwater inflow. Given that > 90% of ground water is 

estimated to enter the lake between depths of 1 and 15 m (Maxwell, 2012), 

combining first order surface inflows with groundwater was considered reasonable. 

A comparison was also made between assigning groundwater Q as a variable rate 

matched to the daily water balance residual and as a constant rate. The comparison 

allowed the modelled water balance to deviate from the measured one by 

approximately 0.2% of the total water mass, demonstrating that groundwater inputs 

had a negligible effect on modelled water transport within the lake. Correlations of 

pelagic surface water tracer dilutions between the two models gave R2 > 0.99.  

Surface inflow and ground water temperature – Daily stream inflow water 

temperature was required for forcing data input as temperature has a strong effect 

on how the inflow interacts with the receiving lake water (Spigel et al., 2005). 

Monthly spot water temperature measurements for 23 of the stream inflows (n = 24 

– 28) were available from Waikato Regional Council (WRC) for the duration of the 

model simulation period. A non-linear regression model (Mohseni et al., 1998) 

provided mean daily inflow water temperatures using five-day average air 

temperatures and quadratic parameters accounting for minimum and maximum 

water temperature observed in the data series (January 2014 until December 2015) 

as well as hysteresis from warming and cooling seasons. The parameter values were 

determined by fitting the regression model to monthly observed temperatures. 

Twelve of the stream inflows did not have water temperature records, so modelled 

daily water temperature from the nearest neighbouring stream of similar catchment 

size (± 20%) was used as a surrogate. The Tokaanu Power Scheme discharge 

included mean hourly temperature for model input, as opposed to daily data, as this 

discharge is highly variable due to fluctuating water residence times within the 

power scheme network. The Tokaanu Power Scheme discharge represents 

approximately 27% of the annual water discharge to the lake. The depth at which 

this water enters the water column is related to its temperature relative to the lake 

water column temperature (Spigel et al., 2005). The mean annual air temperature 

(11.2 °C) was used for the groundwater temperature. 
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Table 5-1: Summary of model input data for the hydrodynamic model.  

Model forcing variable Data type Frequency Source Location Reference 

Air temperature Measured Hourly Cliflo* Turangi http://cliflo.niwa.co.nz/ 

Solar radiation Measured Hourly Cliflo Turangi http://cliflo.niwa.co.nz/ 

Rainfall Measured Hourly Cliflo Turangi http://cliflo.niwa.co.nz/ 

Wind speed/direction Measured Hourly Cliflo Turangi http://cliflo.niwa.co.nz/ 

Atmospheric pressure Measured Hourly MetService Taupo Aero AWS-93245 

Lake level Measured Daily Mighty River Power Acacia Bay 
intake 

 

Outflow Measured Hourly Mighty River Power Waikato Control 
Gates 

 

Hinemaiaia River Measured Hourly Waikato Regional Council 
(WRC) 

Refer to Fig.5.2 
 

Tauranga-Taupo River Measured Hourly WRC Refer to Fig. 5.2  

Whareroa River Measured Hourly WRC Refer to Fig. 5.2  

Tongariro River Measured Hourly NIWA Refer to Fig. 5.2 
 

Kuratau River Measured Hourly King Country Power Refer to Fig. 5.2 
 

Tongariro Power Scheme Measured Hourly Genesis Power Refer to Fig. 5.2 
 

Ungauged surface 
inflows 

Modelled Hourly Catchment area Refer to Fig. 5.2 CLUES (Elliot et al 2011) 

Groundwater Modelled Daily Balance of lake water budget 
 

Refer to text 

Water temperature Measured Monthly WRC  Site A   

 

Geothermal inputs – Lake Taupō sits within an active geothermal zone. The 

Tongariro volcanic centre terminates at the southern end of the lake and the 

Wairakei centre is situated near the northern shores. Active venting has been 

observed below 140 m depth in the lake, with water temperatures >180 °C (de 

Ronde et al., 2002). Measurements of these vents give localised heat leaving the 

sediment of 3.57 W m-2 (Whiteford, 1996). Average values across the geothermal 

field are estimated to be 0.39 W m-2 (Kissling and Weir, 2005). A conservative 

estimate of geothermal heat input was used in this study, 0.35 W m-2. To implement 

this heat input, a geothermal water inflow of 5 m3 s-1 at 95 °C from the benthic 

sediment, as per von Westernhagen (2010), was used in order to provide the 

minimum water volume while maintaining temperatures below boiling point. This 

input represented approximately 30% of the mean annual groundwater input and 

was distributed over a 16 km2 area of the lake bed (80 – 145 m depth) in the area of 

documented geothermal activity (de Ronde et al., 2002). 

5.3.4 Model parameter refinement 

Light extinction coefficient (Kd) values for Lake Taupō were taken from the 

literature for input to the model. Leach et al. (2017) reported Kd = 0.086 m-1 in 

Lake Taupō during summer stratification, when water clarity is greatest. Davies-

Colley (1983) reported Kd = 0.128 m-1 during winter mixing. A constant 

intermediate value of 0.10 m-1 was used as model input. Albedo was set to 0.08 
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corresponding to the mean annual value of ocean water at similar latitude to Lake 

Taupō (Payne, 1973).  

5.3.5 Simulation tracer configuration  

Conservative tracers were used in the model to simulate seasonal exchange of water 

between habitat areas. Tracers were initiated during September and December 2014 

and February, April, June and August 2015, to coincide with field sampling 

campaigns in those months. In each instance tracers were released ten days prior to 

sampling of model output. Two tracers, hereafter referred to as the hypolimnetic 

and epilimnetic tracers, were assigned to pelagic cells for each initiation except 

August 2015 (Figure 5-3). In August, when the lake was fully mixed, a single tracer 

was used through the whole water column. Pelagic cells were defined as any non-

boundary (perimeter) cell with depth >80 m (Figure 5-3). The hypolimnetic tracer 

was assigned to all pelagic cells between the thermocline and the lake bed. The 

thermocline depth was determined for each sampling period using temperature 

profile data (collected using a RBR XR620f Conductivity-Temperature-Depth 

profiling system: Seapoint Sensors Inc., New Hampshire, USA) from Site A during 

each field campaign. Lake Analyzer (Read et al., 2011) was used to calculate 

thermocline depth based on a 0.5 °C temperature difference threshold between 

vertically adjacent measurements in order to avoid detecting diurnal thermoclines 

during the mixed period. The epilimnetic tracer was assigned to all pelagic cells 

from the water surface to the thermocline. Tracer concentrations were set as 1 in 

relevant cells (i.e., 100% of tracer in the water within a given cell) and released for 

12 h. Transport of water between littoral, epilimnetic, and hypolimnetic waters was 

then inferred by the daily rate of tracer accrual at specific sampling sites (i.e., cells). 

Tracer concentrations were directly proportionate to traced water; hence, water flux 

(m3 d-1) into a cell was calculated by multiplying tracer concentration by the cell 

volume. The mean flux was determined as the average daily change in 

concentration over a ten-day period directly preceding a sampling campaign. Tracer 

accrual was measured in nine surface water cells representing the six littoral sites 

and three pelagic sampling sites shown in Figure 5-2. Littoral water movement was 

inferred by calculating the enrichment/dilution of all tracer-free water (i.e., the sum 

of all water not from the pelagic epilimnion or hypolimnion regions). Littoral tracer 

concentration was defined using a mass balance assuming that the known 

concentrations of hypolimnetic and epilimnetic tracers, as well as unknown littoral 

tracer, within a given cell summed to 1. In practice, this included ‘new’ water 
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delivered to the lake from stream and groundwater inflows that became entrained 

with the littoral water and was transported to the pelagic surface water. This 

simplification of littoral water was used as it best aligned with the objective of the 

model simulation, to quantify fluxes of new water (and associated nutrients) into 

pelagic surface waters from physical transport processes. 

 

Figure 5-3: Schematic to demonstrate the horizontal (upper panel) and vertical (lower panel) distribution of 

tracer cells used in this study.  

 

5.3.6 Pelagic surface water N budget 

A budget for dissolved inorganic nitrogen (DIN) was developed for the pelagic 

surface waters for the six sampling periods between September 2014 and August 

2015. As the model was focused on DIN, the fate of organic N after phytoplankton 

uptake was external to the model. Thus losses of organic N from the pelagic surface 

waters (e.g., phytoplankton settling) were considered implicitly; reduced 

phytoplankton biomass (i.e., PON) results in reduced phytoplankton DIN uptake. 

Here pelagic surface water was defined as the top 10 m of the open water (> 80 m 

depth) portion of the lake. This definition of pelagic surface water was applied as it 

corresponds to the scale of bi-weekly surface water monitoring as well as legislated 

water quality guidelines for Lake Taupō. Furthermore, analysis of the top 10 m, as 

opposed to the entire epilimnion, avoided variability associated with seasonal 

changes in the epilimnetic depth. The DIN budget included supply (inputs of new 
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N and recycling of old N), loss (phytoplankton uptake) and change in mass of the 

standing pool: 

∆𝑁 = 𝑓 + 𝑟 − 𝑝 

Where ΔN, f, r and p represent rates of daily change of the DIN pool; influxes of 

new DIN, regeneration rates of old DIN and phytoplankton uptake rates, 

respectively. All fluxes (rates) were expressed in t N day-1 relative to the total 

pelagic surface water (upper 10 m) N pool. The mass balance equation was 

rearranged to solve for recycling (r) using calculations of ΔN, f and p. Influxes of 

new DIN considered were; water exchange between littoral and hypolimnetic 

waters, riverine surface water inflows that entered the pelagic, atmospheric 

deposition, N-fixation, and consumer nutrient recycling. Groundwater N inputs 

were implicitly included in the littoral water exchange. In all instances DIN was 

calculated by summing the concentrations of NO3
--N and NH4

+-N.   

Littoral and hypolimnion DIN exchange – Supply of littoral (fLitt,) and hypolimnetic 

(fHyp,) DIN (t-N d-1) to the surface water was determined as: 

𝑓𝑙𝑖𝑡𝑡 = 𝑤 × 𝐷𝐼𝑁𝑙𝑖𝑡𝑡 

where w and DINlitt represent the monthly mean flux of littoral water into the pelagic 

surface water (m3 d-1) and the DIN concentration of source littoral water (g m-3), 

respectively, and the subscripts denote the origin of the influx. To derive w, the 

mean daily rate of tracer water increase in the pelagic surface water (m3 d-1) was 

multiplied by the pelagic surface water volume (5.46 x 109 m3) to derive a daily 

volume of water flux.  

Riverine DIN input – DIN load from all surface water/riverine inflows (f Inflow) was 

calculated following: 

𝑓𝐼𝑛𝑓𝑙𝑜𝑤 = ∑(𝑄𝑖  ×  𝐷𝐼𝑁𝑖) 

where Qi and DINi are discharge (m3 d-1) and monthly mean DIN concentration (g 

m-3) for a given inflow, respectively. Monthly DIN concentrations were provided 

by WRC. When DIN data were not available for an inflow, concentrations for the 

nearest neighbouring stream were used as a substitute. Due to the way littoral water 

was defined in the hydrodynamic model (including inputs of new water from 

inflows; see above), simulated littoral water exchange with surface pelagic waters 
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implicitly includes surface water inflows. Assuming that no catchment N inputs are 

attenuated within the littoral zone prior to moving off-shore to the pelagic zone, the 

model in its current set-up would otherwise include the catchment N load twice. 

However, N retention in the littoral zone can be substantial (Abell and Hamilton, 

2015) and calculating the catchment N influxes independently of the littoral water 

transported to the pelagic zone is useful for understanding the extent to which 

receiving littoral areas attenuate DIN loads from inflows.   

Atmospheric deposition – Rates of atmospheric deposition were taken from Vant 

and Gibbs (2006), who estimated 27 t yr-1 of total nitrogen deposition on the lake 

surface, of which DIN comprised on average of 38%. No seasonal variation in 

atmospheric deposition rates has been reported (Vant and Gibbs, 2006). As such, 

we used a constant atmospheric deposition rate to the lake of 0.03 t day-1 as DIN. 

N-fixation – Nitrogen fixation by colony-forming cyanobacteria (Dolichospermum 

sp., family Nostocaceae) was estimated using the empirical model of Levine and 

Lewis (1987). In brief, fixation rates were based on their relationship between light 

availability and heterocyst daily N2-fixation rate (N2 cell-1 d-1). Total daily N influx 

from N-fixation to the Lake Taupō surface waters was then calculated by 

multiplying heterocyst N-fixation rates by the number of heterocyst cells present in 

the upper 10 m of the water column and applying units adjustments. Heterocyst 

numbers were derived from total cell counts for Dolichospermum sp. taken from 

phytoplankton samples collected annually from Site A during April and October by 

WRC between 2009 and 2014. Phytoplankton samples were collected using a 10 m 

integrated tube (Verburg and Albert, 2016). Cell counts (cells m-3) were multiplied 

by the pelagic surface water volume (m3). Independent samples collected using a 

45 μm mesh net during September 2014 and April 2015, also from Site A, were 

used to derive the proportion of vegetative to heterocystous cells present in 

Dolichospermum sp. and using exponential linear interpolation between these two 

months to infer daily heterocystous cell abundances during the other modelled 

months. Heterocyst cell proportions and cell counts were used to calculate the total 

number of heterocysts in the upper 10 m, thereby informing modelled daily N-

fixation rates.  

Consumer nutrient recycling – Consumer nutrient recycling rates were estimated 

for smelt (Retropinna retropinna), mussels (Echyridella menziesii), bullies 

(Gobiomorphus cotidianus) and trout (Oncorhynchus mykiss). These species, 
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collectively, represent the majority of large-bodied (> 20 mg wet weight) biomass 

within the lake (James, 1985; Cryer, 1991; Stewart et al., 2017). Smelt, bully and 

trout excretion rates were estimated using length-specific N-excretion rate 

relationships for each species. Data used to derive these relationships were obtained 

for smelt and bullies (Hicks, unpublished data), and trout (Vanni et al. 2017). Smelt 

excretion rate, Esmelt (μg NH4
+-N h-1 Ind.-1) was determined as: 

𝐿𝑛(𝐸𝑆𝑚𝑒𝑙𝑡) = 𝐿𝑛(𝐿) × 0.78 + 3.0 

where L is body length (mm) (Hicks, unpublished data). Seasonal patterns in mean 

body size and abundance of the Lake Taupō smelt population were taken from 

1988-1989 survey data (Cryer, 1991). Bully excretion (EBully, μg NH4
+-N h-1 Ind.-1) 

was determined as: 

𝐿𝑛(𝐸𝐵𝑢𝑙𝑙𝑦) = 𝐿𝑛(𝐿) × 0.63 + 2.8 

where L is body length (mm) (Hicks, unpublished data). Mean size data for bullies 

were taken from Stewart et al. (2017) and annual mean abundance was matched to 

observed bully densities from similar oligotrophic lakes (Rowe et al., 2001). 

Seasonal variation in abundance of bullies was assumed to follow the same pattern 

as smelt. A comparison of mean annual abundances of smelt and bullies was used 

to obtain a density correction (0.12) to convert monthly smelt data to estimates of 

monthly bully biomass. Trout excretion (EBully, μg NH4
+-N h-1 Ind.-1) was 

determined as: 

𝐿𝑛(𝐸𝑇𝑟𝑜𝑢𝑡) = 𝐿𝑛(𝑊) × 0.68 + 2.1 

where W is dry weight (g) (Vanni et al., 2017). Seasonal patterns in mean body size 

and abundance were taken from 1988-1989 survey data of Lake Taupō trout 

populations (Cryer, 1991). A species-specific length-weight relationship (Jellyman 

et al., 2013) was used to convert length data into dry weight. The mean mussel DIN 

excretion rate (11 μg NH4
+-N hr-1 Ind.-1) was taken from observations in Lake 

Taupō (Cyr et al., 2017). This excretion rate was extrapolated to previously 

measured mussel densities in the Lake Taupō littoral area (James 1985). Consumer 

nutrient translocation was considered independently of physical nutrient exchange. 

While a degree of consumer excretion (e.g., excretion within the littoral zone by 

sessile mussels) will become available to pelagic phytoplankton through physical 

offshore transport, quantifying these fluxes independently enables a scrutiny of the 

relative contribution of physical transport and consumer translocation in pelagic 
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nutrient delivery. In order to maintain the independence of physical transport and 

consumer translocation, and to maintain parsimony, it was assumed that N excretion 

from all consumers was available for pelagic phytoplankton uptake. For smelt, 

pelagic smelt which supplement their diet with littoral resources during periods of 

pelagic resource scarcity and also represent the largest consumer biomass (Stewart 

et al., 2017), this was a valid assumption which aligns with previous studies (Vanni 

et al., 2013; Tunney et al., 2014). Given that mussels are sessile obligate littoral 

consumers, their entire N-excretion was considered as an influx of new DIN into 

the pelagic pool. Smelt, bullies and trout, being free swimming fish, spend a 

substantial amount of time in the pelagic water feeding in situ, where their excretion 

is considered to be recycling of old N rather than an influx of new N (Vanni et al., 

2013). For this study, interest was in the potential for mobile consumers to transport 

N between littoral and pelagic waters (consumer nutrient translocation – CNT). To 

account for CNT explicitly, excretion fluxes were multiplied by the mean monthly 

littoral diet portion for each consumer. Monthly littoral-pelagic diet composition 

data were derived from stable isotope analysis (Stewart et al., 2017).   

Phytoplankton DIN uptake – Uptake of DIN by phytoplankton was estimated form 

monthly measurements of carbon (C) uptake from the upper 10 m of Lake Taupō 

(Vincent, 1983) and a stoichiometric conversion. Areal C uptake rates (mg C m-2 h-

1), measured between 1979 and 1980, (Vincent 1983) were multiplied by the pelagic 

surface area of the lake. Carbon uptake was converted to N uptake using a constant 

C:Nmolar ratio of 11.6; the mean value for lentic phytoplankton globally and identical 

to the mean C:N for POM in Lake Taupō during the study period (see Chapter 4).  

In situ N recycling processes – Calculated recycling rates were compared against 

estimates of two primary in situ N recycling processes, zooplankton excretion and 

phytoplankton N release, to test their validity. Zooplankton excretion was estimated 

by multiplying individual excretion rates, lake surface area and monthly areal 

zooplankton densities (Indiv. m2). Mean monthly zooplankton densities were 

obtained from monthly monitoring data between 2000 and 2010 (see Stewart et al., 

2017 for further details). A mixed species average excretion rate (0.003 µg          N 

Indiv.-1 h-1) compiled from multiple published studies (Vanni et al., 2017) was used 

to represent zooplankton excretion. Zooplankton characteristically exhibit diel 

vertical migration (Jolly, 1965; Winder et al., 2004) meaning that, in the context of 

this study, zooplankton grazing-excretion may act as either a net source or sink of 
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N into the pelagic surface waters. Understanding zooplankton N source-sink 

dynamics requires vertical resolution of zooplankton diet and distribution; in the 

absence of these data, our zooplankton excretion estimate represents the maximum 

potential contribution. A substantial body of oceanography research can be used to 

infer phytoplankton N release rates where it is typically expressed as a percent of 

N uptake (Bronk et al., 1994; Lomas et al., 2000, Varela et al., 2003). We used a 

low and high estimate of phytoplankton N release (17.4 and 85.7% of daily uptake, 

respectively) for diatom dominated pelagic systems from the literature (Lomas et 

al., 2000).  

5.3.7 Data analysis 

Model calibration and validation – Calibration and validation of the model was 

performed for the lake water balance, water column temperature, thermocline depth 

and Schmidt stability. The water balance was assessed through comparing modelled 

and measured daily water level (Table 5-1). The model performance for the water 

column temperature was assessed using 30 CTD temperature profiles taken from 

Site A. Of these 30 profiles, six (i.e., 20%) were randomly selected to asses model 

performance, with the remainder used for calibration. The performance of the 

model was quantitatively assessed using root mean square error (RMSE) and 

Pearson’s correlation coefficient values (Bennett et al., 2013) for water temperature. 

The depth and strength of stratification were quantified by calculating thermocline 

depth and Schmidt stability, respectively. Schmidt stability is a measure of 

mechanical mixing required to achieve uniform water column density (Read et al., 

2011). Thermocline depth (as described above) and Schmidt stability were 

calculated using water temperature profiles and bathymetry data using Lake 

Analyzer (Read et al., 2011). These analyses were performed on both modelled and 

measured data and the results compared using RMSE and Pearson’s correlation 

values.  

Analyses of statistical relationships – All data were compiled and inspected using 

Microsoft Excel 2013 (Microsoft Corporation, Redmond WA USA). All reported 

statistical relationships were performed with R (version 3.4.1; R core team, 2017), 

using the base package linear model (lm) function and Type II sums of squares 

(Crawley, 2007). Physical transport rates into the pelagic surface water were 

compared against measurements of cumulative wind, total nitrogen (TN), 

ammonium-N (NH4
+), nitrate-N (NO3

-), ammonium-δ15N (δ15N-NH4
+), nitrate-
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δ15N (δ15N-NO3
-) and POM-δ15N (δ15N-POM) for each of the sampling locations. 

Cumulative wind was defined as the sum of hourly wind speeds (m s-1) over the six 

14-day tracer simulation periods. Total cumulative wind speed as well as 

cumulative south-westerly wind were both quantified. South-westerly wind (185° - 

235°) was calculated separately as this represents the prevailing wind in the area. A 

detailed description of data collection and analysis is provided in Chapter 4 of this 

thesis. Mean monthly pelagic surface water ammonium-δ15N and nitrate-δ15N 

values were also compared against DIN recycling rates calculated from the pelagic 

surface water N mass balance model. For these relationships, DIN recycling rates 

for August were excluded because the water column mixing event, at the end of 

June, occurred prior to the tracer release period and was not represented. Annual 

overturn is the strongest determinant of pelagic primary production in Lake Taupō 

(Vincent, 1983; Stewart et al., 2017) and excluding this nutrient influx likely over-

represented recycling rates during August. Moreover, the study was primarily 

focused on quantifying N fluxes during the stratified season.  

5.4 Results 

5.4.1 Model validation  

The model produced a close fit to measured data for lake water level, thermocline 

depth, and Schmidt stability (Figure 5-4) as well as water column temperature 

(Figure 5-5). Quantitatively, the relationship between measured and observed water 

level, thermocline depth and stability gave Pearson’s correlation coefficient values 

of 0.99, 0.99 and 0.99, and RMSE = 0.01 m, 5.19 m and 1040 kJ m-2 respectively. 

Divergence between modelled and measured water level and stability was greatest 

during summer stratification when modelled water level was underestimated 

(maximum difference = 0.02 m) and stability (maximum = 2100 kg m) and 

thermocline depth (maximum = 6 m) were overestimated (Figure 5-5). 
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Figure 5-4: Comparison of observed (black) and modelled (grey) data for water level (Pearson’s correlation 

= 0.99, RMSE = 0.01 m), thermocline depth (Pearson’s correlation > 0.99, RMSE = 5.2 m) and Schmidt 

stability (Pearson’s correlation = 0.99, RMSE = 1040 kJ m-2). 

 

Water column temperature was well represented by the model throughout the study 

period (Figure 5-6). Quantitatively, this was demonstrated by Pearson’s correlation 

coefficient = 0.99 and RMSE = 0.45 oC. The model tended to slightly underpredict 

surface temperatures during winter mixing (maximum difference = 2.1 °C) and 

slightly over predict metalimnetic temperatures during stratification (maximum 

difference = 2.8 °C) (Figure 5-6).  
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Figure 5-5: Comparison of observed (black) and modelled (grey) temperature profiles from Site A (see Fig. 1) 

for the six validation profiles. 
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Figure 5-6: Model error for observed temperature – modelled temperature during all periods with corresponding model and measured profile data. Colour indicates relative over (red)/under (blue) 

prediction of water temperature by the model.  
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5.4.2 Littoral-pelagic exchange of water and nitrogen   

Dispersal of the pelagic epilimnion tracer in the hydrodynamic model demonstrated 

the spatial and temporal patterns in littoral-pelagic water exchange across the lake. 

The water circulation, which determined littoral-pelagic water exchange, was 

driven by wind, bathymetry and the major riverine inflows at the southern end of 

the lake (Appendix 5–l). Water tended to be transported northward along the eastern 

shoreline. Accumulation of epilimnetic tracer water at littoral measuring sites was 

greatest when on-shore winds were strongest (Appendix 5-1). Transport of littoral 

water into the pelagic surface water varied between 0.3 ± 0.02% (SD) and 3.6 ± 1.1% 

of the pelagic surface water volume per day in December and April, respectively 

(Figure 5-7). During calm periods, when wind was minimal, tracer water movement 

highlighted three geostrophic gyres within Lake Taupō (Appendix 1). Influxes of 

littoral water to the pelagic surface water were greater than those of hypolimnion 

water in all months except December and June (Figure 5-7). Mean concentrations 

of DIN and TN were higher in the littoral water than pelagic surface water across 

all months (Figure 5-7). The littoral-pelagic difference in concentrations of DIN 

and TN was greatest in September (0.02 g m-3) and April (0.21 g m-3) respectively. 

Combined, these water transport rates and DIN concentrations resulted in a 

calculated influx of DIN from the littoral to pelagic surface waters of between 0.31 

and 13.58 t N day-1 in December and April respectively (Figure 5-7). 
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Figure 5-7: Comparisons of concentrations for DIN (a) and TN (b) between surface and littoral water as well 

as fluxes of water (c) and DIN (d) into the pelagic surface water from littoral and hypolimnion areas over the 

six sampled/modelled months.  

 

Littoral-epilimnetic water exchange was positively related (R2 = 0.88, P = 0.02) to 

the cumulative magnitude of south-westerly wind during the 14-day tracer 

simulation period (Figure 5-8). Conversely, the total cumulative wind magnitude 

showed no significant relationship (R2 = 0.10, P > 0.05). Littoral water influx to 

pelagic surface water affected DIN present in the pelagic surface water (Figure 5-

9) and was positively related to the percentage of DIN in TN (R2 = 0.64, P < 0.01). 

No relationship was observed between littoral influx and either nitrate-δ15N (R2 = 

0.18, P = 0.66) or ammonium-δ15N (R2 = 0.07, P = 0.71) values measured in the 

pelagic surface waters.   
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Figure 5-8: Relationship between littoral-epilimnetic water exchange and 14-day cumulative south-westerly 

wind (R2 = 0.88, P = 0.02). South-westerly wind was defined as mean hourly wind periods between 185° – 

235°. The 14 day cumulative period represented the periods of tracer release simulation.  

Intra-annual patterns of DIN influxes to the pelagic surface water – The primary 

fluxes of DIN into the pelagic surface waters were estimated for the six sampling 

periods during the annual cycle (Figure 5-10). These included physical transport 

fluxes from littoral and hypolimnion water, DIN load delivered from 

surface/riverine inflows, atmospheric deposition, cyanobacterial N-fixation and 

consumer nutrient excretion. The calculated physical DIN transport flux from the 

littoral areas of the lake into the pelagic surface water was greater than the load 

delivered by riverine inflows entering the lake in all months except June and August, 

indicating that the littoral zone of Lake Taupō is generally ineffective as a nitrogen 

sink.  The DIN transport flux from the littoral to the pelagic varied substantially 

over the year, between 1.0 t N day-1 in December and 14.2 t N day-1 in April (Figure 

5-10). April was also the period of greatest total DIN flux into the pelagic surface 

waters and littoral flux was the primary source during this period. This period also 

had the highest calculated N-fixation rates (4.8 t N day-1) (Figure 5-10).  
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Figure 5-9: Relationship between littoral influx to pelagic surface water (upper 10 m) and dissolved inorganic 

nitrogen (DIN) as a percentage of the total nitrogen from the three pelagic sampling sites over the six sampled 

months: %DIN = 9.61 x Littoral influx + 13.51; R2 = 0.64, P < 0.01. 

CNT was a larger than physical transport of littoral DIN in all months except 

September and April, indicating that CNT exceeded physical transport in most 

months. The DIN flux from CNT was the largest influx to the pelagic surface water 

in December and February (9.2 and 9.7 t N day-1, respectively). The large CNT-

derived DIN influx during December and February coincided with the period when 

smelt biomass was greatest. Smelt excretion increased from 0.08 to 1.7 t N day-1 

between September and December. The DIN flux delivered from the littoral to the 

pelagic surface water by CNT was greater than that from physical transport in 

December, February and June. Atmospheric deposition remained a relatively minor 

contribution throughout the year.  
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Figure 5-10: Influxes of DIN (t N day-1) into the pelagic surface waters over an annual cycle. Sources of N 

included are: hydrodynamic transport from the hypolimnion (Hypolim.), littoral (Littoral) and surface inflows 

(Riverine); direct atmospheric deposition (Atmos.); biological fixation of N2 (N-Fix.); and consumer nutrient 

translocation (CNT).  

 

Pelagic surface water DIN mass balance – The DIN mass balance demonstrated 

that N cycling in Lake Taupō pelagic surface waters is dominated by uptake and 

recycling (Figure 5-8). Daily uptake of DIN by phytoplankton represented on 

average 89.7% of the available pelagic surface water DIN pool and varied between 

50.3 and 139.2% of the DIN pool in September and December, respectively. The 

contribution of DIN from in situ recycling which would have been required to 

balance the pelagic surface water N budget, excluding August (see Methods), varied 

between 72.4 and 88.8% of daily phytoplankton DIN uptake during April and 

December, respectively (Figure 5-8). The relatively low contribution of recycling 

to the pelagic surface water N budget during April was largely due to the substantial 

increase in physical transport of DIN in this month (Figure 5-8). The size of the 

pelagic surface water DIN pool changed minimally throughout the annual cycle and, 

as such, on average < 0.01% of changes in phytoplankton uptake could be 

accounted for by changes in DIN pool size. Atmospheric deposition was the second 

smallest contributor to the pelagic surface water DIN budget, accounting for on 

average 0.30% of phytoplankton uptake.  
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Figure 5-81: Mass balance of pelagic surface water DIN fluxes, expressed as percent of phytoplankton demand, 

over the six sampled months. Fluxes included are: in situ recycling (Recyc.), hydrodynamic transport from the 

hypolimnion (Hypolim.), littoral (Littoral) and surface inflows (Riverine); direct atmospheric deposition 

(Atmos.); biological fixation of N2 (N-Fix.); and consumer nutrient translocation (CNT).  

 

Investigation of in situ recycling processes – Across all six sampled months, 

maximal estimates of the two considered recycling processes exceeded calculated 

recycling rates (Figure 5-12). Considering exclusively the high estimate of 

phytoplankton recycling, 83% of phytoplankton uptake, accounting for > 100% of 

the calculated recycling rate for four of the months (September and April). The 

estimated relative contribution of zooplankton was greatest during December 

(Figure 5-12).  
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Figure 5-12: Comparison of calculated pelagic DIN recycling rates with two potential processes; zooplankton 

excretion and phytoplankton DIN release. Two phytoplankton DIN release rates are shown representing low 

and high (17 % and 86% of phytoplankton uptake, respectively) rates (Lomas et al., 2000). Displayed 

zooplankton recycling rates do not account for diel vertical migration or variable feeding within the water 

column.  

Relationships between pelagic recycling rate and δ15N values – Calculated 

recycling rates (% of DIN pool) showed strong positive linear relationships for 

nitrate-δ15N (R2 = 0.79, P = 0.04), ammonium-δ15N (R2 = 0.82, P = 0.04) and POM-

δ15N (R2 = 0.60, P = 0.12) (Figure 5-9). August samples were anomalous to the 

linear relationship observed across other months for ammonium-δ15N and, to a 

lesser extent, nitrate-δ15N and POM-δ15N (Figure 5-9). For these samples, 

entrainment of hypolimnetic water during overturn fell outside of the tracer analysis 

period and was not captured in subsequent measurements.  
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Figure 5-9: Regression relationships of calculated monthly DIN recycling rates with nitrate-δ15N (a), 

ammonium-δ15N (b) and POM-δ15N (c) for the six sampling months.  

 

5.5 Discussion   

5.5.1 Overview  

This study highlights the importance of littoral-pelagic habitat coupling in lakes and 

temporal variability in the processes that produce this coupling (primarily physical 

transport and consumer excretion) in a large oligotrophic lake through quantifying 

the ecological significance of exchanges of water of littoral and hypolimnetic 

waters with pelagic surface water. The sum of all DIN influxes to the pelagic 
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surface waters during the stratified season (new nitrogen) accounted for <30% of 

phytoplankton uptake, highlighting the importance of in situ biogeochemical 

processes, namely recycling, for the pelagic surface water N budget. Consumer 

translocation of littoral derived N excretion supplied more DIN to pelagic surface 

waters than physical transport during summer stratification (December and 

February). The lack of any relationship between littoral DIN influx and nitrate-δ15N 

in pelagic surface waters, combined with the substantial contribution of in situ 

recycling required to balance the pelagic surface water DIN budget, provides 

evidence that observed seasonal 15N depletion over summer stratification results 

from nutrient recycling. Counter to the initial hypothesis that 15N depletion 

indicates in situ recycling, δ15N values of nitrate, ammonium and POM were all 

positively related to the calculated recycling rate. These positive relationships, are 

attributed to direct N release by phytoplankton, resulting from the differing isotopic 

effect of phytoplankton N release and its greater contribution when phytoplankton 

biomass in high. Interpretation and implications of these findings are detailed below. 

5.5.2 Simulated water circulation  

The 3-D hydrodynamic model performed well at representing observed water 

column temperatures over the study period. Under stratified conditions, influxes of 

littoral water to pelagic surface water exceeded that from the hypolimnion. 

However, it should be noted that the tracer initialisation periods did not encompass 

the period when overturn and complete water column mixing occurred, 24 July 

2015, which was outside of the two-week period when tracer dispersal was 

quantified, coinciding with sampling campaigns (15 – 17 June 2015 and 8 – 9 

August 2015). Hence, the hypolimnetic influx from lake overturn was not recorded 

in the model output and subsequent analyses under-represented the influx from this 

event during the August simulation period. As a result, the focus was primarily on 

the stratified period up until June 2015 but the results from the August sampling 

remain included due to the importance of this period in pelagic primary production 

in the lake (Vincent, 1983; Stewart et al., 2017). During the nutrient-deplete 

stratified summer period in Lake Taupō, littoral transport was the dominant water 

influx to the pelagic surface waters. The observed relationship between wind speed 

and littoral-pelagic exchange of water demonstrated the strong influence of wind. 

Furthermore, the substantial effect of wind direction, namely south-westerly winds, 

on the exchange rates suggests a potential interactive influence from lake 

bathymetry. The south-west – north-east axis of Lake Taupō represents the longest 
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wind fetch and greatest accumulation of wind derived energy by the lake surface 

(Rueda and Macintyre, 2010). These potential interactions between wind and 

bathymetry demonstrate the power of applying a hydrodynamic model to a given 

lake basin for quantifying physical transport rates. Littoral-pelagic water exchange 

was still evident throughout prolonged calm periods demonstrated the additional 

importance of surface currents in physical transport. The geostrophic circulation in 

the lake basin was associated with three gyres which were important drivers of 

littoral-pelagic exchange during calm periods. This circulation pattern has 

previously been identified in Lake Taupō (Spigel et al., 2005). The model 

simulation reproduced interactions of the Tongariro River and the Tokaanu power 

scheme discharge with the water column at the southern end of Lake Taupō (Spigel 

et al., 2005). Both inflows entered as underflows during winter and spring, and were 

deflected to the eastern side of the lake basin by geostrophic currents before moving 

northward along the eastern shoreline towards the central basin (Spigel et al., 2005). 

During summer and autumn, both inflows demonstrated buoyant surface jets and 

mid-water column intrusions. The observed interactions between lake basin, 

geostrophic currents and inflow patterns can be generalised to large lakes (Patalas, 

1961; Boehrer and Schultze, 2008; Rueda and MacIntyre, 2010) and, although 

currents are unique to each lake basin, they indicate that the relative role of physical 

nutrient transport between littoral and pelagic habitats can be broadly applied across 

lakes when basic information of lake basin hydrodynamics is understood. 

Furthermore, the agreement between the results of this study and that of previous 

studies from Lake Taupō provide confidence in the validity of modelled physical 

littoral-pelagic water exchange during the stratified period.  

5.5.3 Littoral-pelagic exchange by physical transport  

Model tracer influxes of littoral water and DIN into pelagic surface waters were 

simulated to be greatest during April, the austral autumn. At this time, surface water 

temperatures had decreased from a summer maximum and had created conditions 

conducive to inflows entering the lake as a buoyant jet, carrying entrained littoral 

water out to the surface pelagic waters (Spigel et al., 2005) and cumulative south-

westerly wind forcing was greatest. Furthermore, littoral water DIN concentrations 

were elevated during this period. Throughout the year, DIN concentrations in 

littoral waters were higher than pelagic surface waters, indicating potential for a net 

flux of DIN from littoral to pelagic surface waters. The influx of littoral waters into 

pelagic surface waters was significantly related to the percentage of DIN in the TN 



 

163 

pool throughout the simulated period. Importantly, there was no relationship 

between nitrate-δ15N values and littoral influxes of DIN to surface pelagic waters, 

implying that although physical littoral-pelagic exchange provides new DIN, it has 

little effect on nitrate-δ15N values. Thus, the large observed variation in nitrate-δ15N 

values over an annual cycle is likely to be due to other processes, primarily in situ 

recycling (Finlay et al., 2007; Chapter 4).   

5.5.4 Pelagic recycling rates inferred through mass-balance  

Phytoplankton DIN uptake was the largest flux in the mass balance model. As such, 

variation in phytoplankton uptake had the largest influence of calculated recycling 

rates. Given that this parameter was derived from data twenty years beforehand, it 

presents arguably the largest limitation in the accuracy of the model. However, there 

has been little change in monthly Chl-a concentrations between when carbon uptake 

data were collected (1979) and present. The greatest difference between the two 

periods was during August (0.2 g m-3) when concentrations were 2.6 and 2.4 g m-3 

in 1979 and 2015, respectively (Vincent, 1983; Verburg and Albert, 2016). 

Additional uncertainties in the mass balance model were the under-representation 

of hypolimnetic DIN contributions from mixing prior to August measurements 

from lake overturn and calculated N-fixation rates. Under-representation of 

hypolimnetic DIN influx associated with destratification was accounted for by 

excluding the August N-budget from further analyses. Our calculations of N-

fixation are likely to be conservative as March, when Dolichospermum sp. 

abundance is typically highest (Verburg and Albert 2016) was excluded and the 

per-heterocyst N-fixation rates reported by Levine and Lewis (1987) are at the 

lower end of published rates (Oliver et al. 2012).  Under representing N-fixation is 

likely confined to March and April when diazotrophic cyanobacteria abundance is 

greatest and surface water N:P is lowest (Verburg and Albert, 2016). Further field 

research to quantify contemporary phytoplankton N-uptake and N-fixation rates 

would improve the confidence of the current pelagic surface water N-budget for 

Lake Taupō and better constrain the portion of the Lake Taupō N load that is 

currently not managed. The non-managed proportion of the N load has implications 

for the efficacy of current N load management that targets the catchment-derived 

load.  

The Taupō N-budget mass balance model demonstrated that biogeochemical 

recycling is the dominant process for DIN supply in pelagic surface water, far 
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exceeding littoral and hypolimnetic transport influxes. Recycling remained the 

dominant DIN influx in pelagic surface waters throughout the year. When surface 

water temperatures were warmest, in December and February, consumer-derived 

littoral DIN translocation to the pelagic surface waters exceeded physical transport. 

These results suggest that the effects of biological (i.e., metabolic and food web) 

interactions on nutrient availability, and ultimately phytoplankton production, are 

commonly underrepresented.   This finding reflects a growing recognition of high 

rates of N flux in euphotic pelagic waters (Finlay et al., 2007; Kumar et al., 2008). 

In Lake Superior, a large temperate phosphorus-limited (N:Pmolar ≈ 50) system, 

external N influxes accounted for approx. 40% of phytoplankton N uptake, far 

exceeding previous assumptions that supply exceeded demand (Kumar et al., 2008). 

Kumar et al. (2008) also found that N-uptake was temperature sensitive. Taking 

into consideration the higher mean annual surface water temperatures (O’Reilly et 

al., 2015) and lower N:P in Lake Taupō relative to Lake Superior, findings from the 

two systems are in agreement that biological recycling is by far the most important 

N flux for meeting phytoplankton N demand in pelagic surface waters.  

Examination of two potential recycling processes, zooplankton excretion and 

phytoplankton nutrient release, suggested that recycling rates inferred from the 

mass-balance model were within reasonable accuracy. However, it is important to 

note that the estimates used for these two processes were based on limited data; 

phytoplankton recycling rates were derived from analogous marine species and 

zooplankton excretion did not consider diel vertical migration. Given that 

zooplankton typically spend limited time in lake surface waters (Jolly, 1965; 

Winder et al. 2004), their contribution to recycling is likely to be less than 

represented here. However, given that a large proportion of Lake Taupō 

zooplankton diet is derived from metalimnetic phytoplankton (Stewart et al., 2017), 

the reduced recycling contribution is likely to be partially offset by zooplankton 

translocating metalimnetic-derived N into surface waters (Baustain et al., 2014). 

The caveats to the empirical data for recycling processes described here highlight a 

significant knowledge gap in the understanding of lake nutrient cycles. The 

biological nutrient recycling processes that accounted for > 70% of the available N 

for primary production in this study are poorly understood and sit outside of most 

nutrient management legislation (Hamilton et al., 2016). Uncertainty associated 

with biological recycling processes represents a limitation to the confidence that 

can be placed in catchment nutrient management interventions. 
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5.5.5 Potential determinants of physical littoral-pelagic exchange  

Considering the attributes of Lake Taupō that result in seemingly high contributions 

of biological processes to the pelagic surface water N budget provides an important 

context for understanding the generality of the findings from this study. The relative 

role of physically-driven nutrient transport processes increases towards the poles 

(Kilham and Kilham, 1990; Lewis, 2010). Lake Taupō has previously been labelled 

a ‘temperate-tropical hybrid’ lake (Vincent, 1983) and should represent a mid-point 

in the balance between biological and physical nutrient supply processes. While this 

would imply that biological processes dominate generally across lakes, other factors 

that influence physical transport, namely basin morphological characteristics 

(Monismith et al., 1990; MacIntyre et al., 2009), should be considered. A greater 

littoral percentage of lake surface area results in more littoral-pelagic exchange 

(Monismith et al., 1990), as does greater shoreline complexity (e.g., presence of 

peninsulas) (Jones et al., 2007) and steeper bottom slopes (MacIntyre et al., 2009). 

In this context Lake Taupō, having a relatively small area of littoral habitat and 

being circular in shape, should be have relatively low littoral-pelagic exchange rates 

at the global scale. The basin morphological features that promote physical littoral-

pelagic exchange also promote littoral-pelagic diet coupling by mobile consumers 

(Vander Zanden and Vadeboncoeur, 2002; Vanni et al., 2013). This suggests that 

CNT and physical littoral-pelagic exchange should increase concomitantly higher 

proportions of littoral lake surface area. Hence, while basin morphology will alter 

net littoral-pelagic nutrient exchange (i.e., both CNT and physical transport), the 

relative contributions of the two fluxes should remain largely unaffected.  

5.5.6 Effects of recycling on δ15N  

The positive correlation between the calculated N recycling rate and nitrate-δ15N, 

ammonium-δ15N and POM-δ15N values is counter to assertions that N recycling 

results in 15N depletion of the DIN pool (Chapter 4). Recycling rates were positively 

related to chlorophyll abundance (R2 = 0.51), suggesting that phytoplankton 

abundance has a substantial effect on recycling rates. Although often not considered 

as nutrient sources, phytoplankton release nutrients that can support subsequent N 

uptake (Elser et al., 1995; Verala et al., 2005). Thus, higher phytoplankton biomass 

can correspond to higher N recycling rates. Phytoplankton often release N on a 

diurnal basis. Furthermore, autotrophs and heterotrophs fractionate excreted N 

differently (Slawyk et al., 1998; McMahon and McCarthy 2017). Autotroph 

excretory-δ15N is primarily affected by fractionation during nutrient uptake 
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(Robinson 2001) whereas heterotroph excretory-δ15N fractionation is from 

metabolism which depletes 15N (McMahon and McCarthy 2017). In addition, 

release of labile DON by autotrophy is characteristically 15N enriched (Slawyk et 

al., 1998). Based on this information, we postulate that the positive relationships 

between δ15N values and recycling rates reflect the balance of autotrophic and 

heterotrophic contributions to the recycling flux. The 15N deplete values thus reflect 

the background heterotrophic recycling that is likely to be reasonably constant 

throughout the year (Figure 5-10). This is consistent with the assumption that 

heterotrophic nitrogen recycling results in 15N depletion of the DIN pool (Chapter 

4).  

  

Figure 5-10: Schematic representation of the effects of increases and decreases in autotrophic and 

heterotrophic biomass on δ15N values of the pelagic surface water dissolved inorganic nitrogen (DIN) pool due 

to nitrogen recycling over an annual winter-mixing summer-stratification cycle  

 

5.5.7 Summary  

Nitrogen cycling is one of the processes that underpin primary production in lakes. 

Understanding and quantifying the processes that contribute to N cycling is critical 

for lake management focused on water quality. Water quality targets are commonly 

set with the objective of directly controlling catchment nutrient loads in order to 

regulate phytoplankton production. In this study it has been demonstrated that 

within-lake processes strongly mediate nitrogen supply over an annual cycle. 

Physical transport results in a substantial influx of DIN from the littoral to the 

pelagic zone but in situ recycling and consumer translocation from littoral-derived 
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N make an even greater contribution to DIN supply in the pelagic surface waters 

during the stratified period in Lake Taupō. This appears to represent a general 

phenomenon characteristic of large lakes which tend to have relatively high 

proportions of pelagic habitat. The findings imply that DIN supply in lakes, and 

thus phytoplankton production, is likely to be influenced by trophic interactions, 

adding the potential for strong feedback effects and non-linearity in primary 

production responses to catchment loads. Consideration of biological effects on N-

cycling is likely to greatly improve understanding of relationships between 

catchment N load and phytoplankton production in lakes. Future research 

comparing DIN fluxes from physical and biological processes across a range of lake 

attributes, in particular basin morphology and water temperature, will enhance the 

generality of these findings to other lakes.    
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Appendix 5-1: Colour contour maps of Lake Taupō surface water showing dispersion of the epilimnetic tracer 

during each of the six simulated periods. For each month the colour contour map shows tracer dispersion 14 

days after initialisation of tracer release.   
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6. Chapter six 

Synthesis and conclusions 

6.1 Overview 

This thesis investigates the relationship between nitrogen cycling and food web 

dynamics in a large, deep, oligotrophic lake. By combining stable isotope field data 

from food web consumers and particulate organic and dissolved inorganic nitrogen 

pools, as well as modelled data over a complete annual cycle, I have demonstrated 

strong coupling of nitrogen cycling and food web dynamics in the lake. Nitrogen 

cycling and food web interactions were bi-directional, with the direction (i.e., 

bottom-up vs. top-down) changing seasonally. Winter water column mixing elicited 

bottom-up forcing through the influx of nutrients that fuelled peak phytoplankton 

production. During this period consumers switched their diets towards pelagic 

resources. Following the onset of summer stratification, due to reduced nutrient 

concentrations and phytoplankton biomass, top-down effects had an increasingly 

important role in regulating pelagic primary production. In situ recycling 

preferentially retained nitrogen (N) within the pelagic zone and excretion of littoral-

derived N by mobile consumers translocated N into the pelagic surface waters. 

These findings give a new perspective on ecosystem function in oligotrophic lakes 

which, it is envisaged, will a) provide a foundation for future empirical research 

quantifying drivers of N-recycling rates and, b) provide an argument for integrating 

food web dynamics and water quality in nutrient management of oligotrophic lakes. 

The primary findings of the four research chapters are provided below, followed by 

discussion of management implications and future research directions.  

6.2 Research summary 

Chapter two used a literature synthesis to a) summarise current understanding of 

the drivers of lake nutrient cycling processes and food web dynamics, and b) 

integrate knowledge from these two fields to develop understanding of the role of 

consumer nutrient recycling (CNR). The current paradigm of nutrient cycling in 

lakes has followed a linear progression from considering effects of catchment loads 

and seasonal hydrodynamic processes (i.e., mixing and stratification) through to 

biogeochemical recycling. Increasingly, research is demonstrating that, in specific 

contexts, recycling by large-bodied mobile consumers can have a significant role in 

generating nutrients to support primary production. Application of general rules 



 

175 

from food web theory can help explain these context specific variations in nutrient 

recycling. Lake food webs follow a common structure where lower trophic level 

consumers have highly specialised (either pelagic or littoral) diets whereas 

consumers from increasingly higher trophic levels link littoral and pelagic food 

chains. Furthermore, periods of prolonged low nutrient availability, such as during 

stratification, were identified as when biota had greatest reliance on CNR. During 

this period larger, higher trophic level consumers were able to maintain populations, 

unlike smaller bodied consumers. The review concluded by exploring how stable 

isotopes may a highly suitable means to demonstrate CNR effects. 

Chapter three applied concepts from food web theory covered in chapter two to 

explore the seasonal food web dynamics in Lake Taupō. It demonstrated that diet 

composition was extremely variable over the year, with consumers switching 

between predominantly pelagic resources directly after winter mixing and littoral 

resources during the stratified period. Variable littoral-pelagic diet coupling was 

driven by seasonal patterns in zooplankton abundance. Zooplankton abundance 

itself was driven by interactions with phytoplankton; greater nutrient availability 

during winter mixing increased both phytoplankton and zooplankton abundance. 

During stratification, phytoplankton-zooplankton interactions became governed by 

stable limit cycle dynamics. The large intra-annual variation in diet composition 

observed in smelt and trout in particular is contrary to previous assumptions that 

Lake Taupō is a pelagic dominated food web (see Rowe and Schallenberg, 2004), 

but is consistent with food web theory.  

Chapter four used ammonium, nitrate and POM stable isotope data to provide 

evidence for the contribution of CNR to nutrient pools observed over a seasonal 

cycle in Lake Taupō. This research: i) validated the assumption that consumer 

excretion is a 15N-deplete source of dissolved inorganic nitrogen (DIN); ii) 

demonstrated a significant and direct 1:1 relationship between the δ15N values of 

zooplankton excretion and ammonium present at the deep chlorophyll maximum 

(DCM), indicating that zooplankton excretion contributes substantially to the 

ammonium at the DCM; and iii) used seasonal data for nitrate, ammonium and 

POM δ15N to demonstrate that CNR contributions were greatest in the pelagic 

surface waters during summer stratification. Substantial spatial variation in δ15N 

values suggested that effects of CNR were highly localised in space and time. 

Nitrate δ18O data provided data for mechanistic insights, showing that the 
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contribution of CNR-derived nitrate was greatest when heterotrophic biomass, 

relative to primary producer biomass, was highest. These findings are in strong 

agreement with patterns predicted from the literature synthesis, that CNR will be 

most important as a source of DIN during periods of low nutrient availability when 

there is high consumer biomass (i.e., net ecosystem heterotrophy).  

Chapter five used a N mass balance to investigate the significance of recycling 

relative to physical transport for fluxes of DIN within the pelagic surface water 

during the stratified period. Recycling of N in the pelagic surface water was the 

primary source of N for phytoplankton uptake. Recycling rates varied seasonally 

with phytoplankton biomass, indicating that recycling acts interactively (i.e., as a 

positive feedback) with other nutrient influxes. A positive correlation between 

recycling rate and δ15N values for nitrate, ammonium and POM suggested that 

seasonal increases in recycling were largely driven by increased phytoplankton 

biomass and associated N release. This is because phytoplankton N release is 

associated with 15N-enrichment. The 15N-depletion of the surface water DIN pools 

associated with CNR became evident when phytoplankton biomass declined 

seasonally yet consumer biomass remained relatively constant.  While physical 

transport of nutrients from the littoral zone to the pelagic surface waters is the 

primary source to support open-water production over the course of an annual cycle, 

there was substantial seasonal variation and CNT fluxes became increasingly 

important during early and mid-stratification (December to February). 

6.3 Implications and future research directions  

This study demonstrates, firstly, that food web  ̶  nitrogen cycling interactions are 

tightly coupled and bi-directional. Physical forcing tends to drive bottom-up 

changes in primary production while food web interactions concomitantly have 

strong top-down effects on productivity via nitrogen cycling. Secondly, it 

demonstrates the strong effect of seasonality (i.e., climatic forcing) on food web-

nitrogen cycling interactions.  

The tight coupling between nitrogen cycling and food web dynamics observed in 

Lake Taupō suggests that there is a strong possibility that drastic alterations of the 

food web, such as the sudden decline in trout size and abundance observed in 2005, 

will have a substantial effect on nutrient cycling in the lake. For example, based on 

knowledge that smelt excretion is the primary influx of DIN to the pelagic surface 

water during December and February, nutrient concentration monitoring data from 
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the mid-lake station during these months are most likely to show inter-annual 

variations related to smelt abundance. Given the strong trophic interactions 

observed between smelt and trout, the post-2005 decline in trout is likely to also 

reflect drastic changes in the smelt population and hence pelagic nutrient 

concentrations during December and February. Higher smelt biomass may have a 

positive feedback effect on pelagic productivity during stratification, resulting in 

pelagic resources remaining abundant throughout the stratified season for longer 

and intern sustaining a larger smelt biomass (Dong et al. 2017; Farnsworth et al. 

2017). December through February is the period of the year typically characterised 

by high zooplankton biomass and low phytoplankton biomass (Stewart et al. 2017). 

Additional nutrients available for phytoplankton growth during this period are 

likely to be critical for sustaining zooplankton biomass (hence pelagic food 

resources available for smelt) over the stratified period (Herren et al. 2016). 

Strong climatic forcing results in Lake Taupō oscillating between two states; 

winter-mixing and summer stratification. The food web response to these two states 

can be generalised as a) winter mixing driving productivity and providing a ‘pulsed’ 

bottom-up forcing event followed by b) increasing top-down regulation during the 

stratified season, which acts to attenuate the winter pulse. This seasonal pattern can 

be described as “thrive and survive” dynamics. The “thriving” period corresponds 

to the rapid growth across all trophic levels associated with winter mixing and 

increased pelagic phytoplankton production. Summer stratification is the “survival” 

period when resource scarcity across all trophic levels promotes ecosystem 

functions that tend to be associated with resilience (e.g., diet breadth in consumers 

and utilisation of recycled nutrients) (Walters and Post 2008). With increasing 

duration of stratification (e.g., associated with climate warming), it is likely that the 

food web responses to sustain ecosystem function will eventually reach a threshold 

after which time the higher trophic level biomass will drastically decline. 

Determining where this threshold point lies is of fundamental importance to 

understanding food web resilience to global change stressors such as climate change 

(O’Reilly et al. 2003; Verburg et al. 2003). 

Seasonal patterns of nitrogen cycling and food web dynamics in Lake Taupō 

demonstrated by this study may provide mechanisms that have been suggested to 

promote resilience to climate change (Adrian et al., 2008; Moss, 2012). Winter 

mixing in Lake Taupō has been shown to be reduced during strong El Niño 



 

178 

Southern Oscillation (ENSO) climatic periods (Hamilton et al. 2013). Given the 

significance of winter-mixing in driving food web production in Lake Taupō, 

ENSO events are likely associated with reduced pelagic prey availability for smelt 

and trout. ENSO events are also predicted to increase in frequency and magnitude 

with climate change (Hamilton et al. 2013). The findings from this thesis highlight 

food web vulnerabilities to climate change in terms of prolonging stratification, 

reducing the duration of winter stratification and extending summer periods of 

depauperate production. These effects may be mitigated by management that 

promotes littoral habitat quality and enhanced secondary production.  

This study adds to the growing body of research demonstrating interactions between 

nutrient cycling and food web dynamics, supported by integration of CNR into 

ecosystem level models (Vanni et al. 2013; Allgeier et al. 2017). The mechanisms 

governing CNR found in this study are expected to be general to oligotrophic lakes. 

However, future research should focus on disentangling the general and system-

specific effects on N cycling (e.g., lake basin morphology and local climate), to 

better understand the potential of CNR to act as a feedback mechanism that 

promotes resilience to global environmental change stressors such as climate 

change. Investigating phosphorus cycling in a similar framework would be 

extremely beneficial and could address questions such as whether P cycling could 

be controlled by biological recycling to the same extent as N-cycling. Primary 

production in lakes tends to become more N limited towards the tropics (Abell et 

al. 2012), a pattern that corresponds to reduced physical transport and increased 

proportion of recycling supporting primary production (Kilham and Kilham 1990; 

Lewis 2010). As dissolved N and P will be transported similarly, the latitudinal 

patterns of N and P limitation could be interpreted as the higher biological recycling 

observed in tropical than temperate lakes more effectively recycling P than N. This 

interpretation would suggest that P is more efficiently recycled (i.e., more reliant 

on biological interactions) than the N cycling effects demonstrated in this thesis. 

Greater recycling efficiency of phosphorus could be assumed given that the DOP 

pool is generally significantly more labile than the DON pool within lakes (Kilham 

and Kilham 1990). Expanding this deduction, production in high latitude P-limited 

systems (in which physical transport processes are relatively more important) could 

be assumed to be more limited by recycling processes than in lower latitude N-

limited systems. Hence, primary production in strongly P-limited lakes may be 

more sensitive to food web changes. This would suggest that responses to food web 
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perturbations, such species invasions, may be more drastic within P-limited lakes 

(e.g., the large alpine lakes in the South Island of New Zealand – Burns 1991; Abell 

et al. 2012). 

6.4 Management considerations 

At a practical level, this study provides information on where to focus and integrate 

management of water quality and food web dynamics (i.e., the trout fishery) in Lake 

Taupō. Here I elaborate on two possible management avenues. First, the trout 

fishery provides the lake managers with the opportunity to actively manage top-

predator biomass through angling pressure. The substantial contribution of smelt 

nutrient translocation to the pelagic surface water N budget, and the potential for 

top-down control via the trout fishery to affect nutrient availability, and 

consequently phytoplankton biomass, warrant further investigation. Second, 

adaptive fishery management may also be achieved in Lake Taupō, enabling fishing 

pressure to be adjusted based on winter pelagic primary production. Annual water 

column mixing and chlorophyll concentration data (such as that recently collected 

at high frequency from a mid-lake autonomous monitoring buoy) could provide 

high resolution pelagic algal biomass data to inform a food web model. A food web 

model driven by primary production data would enable forecasting for the trout 

fishery and could be used to adjust regulations that govern angling pressure on an 

annual basis.  

For an integrated water quality – food web based management approach to be 

successful, monitoring and active management of littoral areas are critical 

(Vadeboncoeur et al. 2002). Given the high reliance on littoral food resources 

across the food web during stratification, habitat restoration to enhance secondary 

production (e.g., indigenous macrophyte bed restoration (Coffey and Clayton 1988; 

Kovalenko and Dibble 2010) and reintroduction of woody debris (Francis and 

Schindler 2009; Sass et al. 2012)) would enhance food web resilience. Littoral 

restoration can potentially affect both physical and consumer-derived littoral-

pelagic DIN exchange. Increasing benthic primary production in littoral areas may 

reduce water column DIN and thus reduce physical fluxes to the pelagic zone. A 

predicted increase in consumer littoral diet reliance associated with littoral habitat 

restoration would result in increased translocation of littoral-derived consumer N 

excretion into the pelagic zone. Increased biotic littoral-pelagic coupling during 

stratification may create a stabilising effect which could feed back to higher pelagic 
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primary production during summer stratification and therefore more seasonally 

stable food web dynamics.  

Although management implications of this thesis have been directed specifically to 

Lake Taupō, they can be applied to other large oligotrophic lakes globally. It is well 

recognised that large oligotrophic lakes are extremely sensitive to climate change, 

species invasions and nutrient enrichment (Adrian et al. 2010; Carpenter et al. 2011). 

It is envisaged that this study will lay the foundation for future studies to quantify 

critical thresholds for these stressors specific to large oligotrophic lakes in the same 

why that has been demonstrated for shallow lakes (Søndergaard et al. 2007). 

Integrated management, as highlighted here, presents a new avenue for sustaining 

our most treasured lakes.  
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